Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 15(5): 3951-5, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26505030

RESUMO

Glancing angle deposited TiO2 nanowires (NWs) were doped with nitrogen (N) using plasma-enhanced chemical vapour deposition technique, under the treatment of N2/Ar plasma. A red shift (- 0.51 eV) in the main band transition and oxygen defect related transition (-2.1 eV) was observed for the N doped TiO2 nanowires. The interstitial nitrogen introduces mid-gap levels N (2P) above the O (2P) in the TiO2 forbidden gap. The photoluminescence measurement revealed a small red shift of -7 nm of anatase band gap from N doped TiO2 nanowires due to radiative recombination of carriers from conduction band to the N (2P) trap state. The low frequency Raman peaks at 304 cm(-1) (acoustical phonons with LA mode), 618 cm(-1) (optical phonons with LO modes) and the high frequency peak at 832 cm(-1) was observed from Ti-O-N due to the partial replacement of oxygen molecules by nitrogen into TiO2, during the doping process.

2.
J Nanosci Nanotechnol ; 15(7): 5099-104, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26373086

RESUMO

Zigzag TiO2 nanostructures were fabricated using oblique angle deposition technique. The field emission gun-scanning electron microscope (FEG-SEM) image shows that the TiO2 zigzag nanostructures were ~500 nm in length. Averagely two times enhanced UV-Vis absorption was recorded for zigzag structure compared to perpendicular TiO2 nanowires. The main band transition was observed at ~3.4 eV. The zigzag TiO2 exhibited high turn on voltage (+11 V) than that of nanowire (+2 V) detector under dark which were reduced to +0.2 V and +1.0 V under white light illumination, respectively. A maximum ~6 fold photo-responsivity was observed for the zigzag TiO2 compared with nanowire device at + 1.0 V applied potential. The maximum photo-responsivity of 0.36 A/W at 370 nm was measured for the zigzag TiO2 detector. The TiO2 zigzag detector showed slow response with rise time of 10.2 s and fall time of 10.3 s respectively. The UV (370 nm) to visible (450 nm) wavelength rejection ratio of photo-responsivity was recorded ~4 times for the detector.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...