Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474985

RESUMO

Computer vision in the structural health monitoring (SHM) field has become popular, especially for processing unmanned aerial vehicle (UAV) data, but still has limitations both in experimental testing and in practical applications. Prior works have focused on UAV challenges and opportunities for the vibration-based SHM of buildings or bridges, but practical and methodological gaps exist specifically for linear infrastructure systems such as pipelines. Since they are critical for the transportation of products and the transmission of energy, a feasibility study of UAV-based SHM for linear infrastructures is essential to ensuring their service continuity through an advanced SHM system. Thus, this study proposes a single UAV for the seismic monitoring and safety assessment of linear infrastructures along with their computer vision-aided procedures. The proposed procedures were implemented in a full-scale shake-table test of a natural gas pipeline assembly. The objectives were to explore the UAV potential for the seismic vibration monitoring of linear infrastructures with the aid of several computer vision algorithms and to investigate the impact of parameter selection for each algorithm on the matching accuracy. The procedure starts by adopting the Maximally Stable Extremal Region (MSER) method to extract covariant regions that remain similar through a certain threshold of image series. The feature of interest is then detected, extracted, and matched using the Speeded-Up Robust Features (SURF) and K-nearest Neighbor (KNN) algorithms. The Maximum Sample Consensus (MSAC) algorithm is applied for model fitting by maximizing the likelihood of the solution. The output of each algorithm is examined for correctness in matching pairs and accuracy, which is a highlight of this procedure, as no studies have ever investigated these properties. The raw data are corrected and scaled to generate displacement data. Finally, a structural safety assessment was performed using several system identification models. These procedures were first validated using an aluminum bar placed on an actuator and tested in three harmonic tests, and then an implementation case study on the pipeline shake-table tests was analyzed. The validation tests show good agreement between the UAV data and reference data. The shake-table test results also generate reasonable seismic performance and assess the pipeline seismic safety, demonstrating the feasibility of the proposed procedure and the prospect of UAV-based SHM for linear infrastructure monitoring.

2.
Sensors (Basel) ; 20(23)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266029

RESUMO

Much research is still underway to achieve long-term and real-time monitoring using data from vision-based sensors. A major challenge is handling and processing enormous amount of data and images for either image storage, data transfer, or image analysis. To help address this challenge, this study explores and proposes image compression techniques using non-adaptive linear interpolation and wavelet transform algorithms. The effect and implication of image compression are investigated in the close-range photogrammetry as well as in realistic structural health monitoring applications. For this purpose, images and results from three different laboratory experiments and three different structures are utilized. The first experiment uses optical targets attached to a sliding bar that is displaced by a standard one-inch steel block. The effect of image compression in the photogrammetry is discussed and the monitoring accuracy is assessed by comparing the one-inch value with the measurement from the optical targets. The second application is a continuous static test of a small-scale rigid structure, and the last application is from a seismic shake table test of a full-scale 3-story building tested at E-Defense in Japan. These tests aimed at assessing the static and dynamic response measurement accuracy of vision-based sensors when images are highly compressed. The results show successful and promising application of image compression for photogrammetry and structural health monitoring. The study also identifies best methods and algorithms where effective compression ratios up to 20 times, with respect to original data size, can be applied and still maintain displacement measurement accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...