Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artif Cells Nanomed Biotechnol ; 52(1): 186-200, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38465883

RESUMO

Green-mediated synthesis of nanoparticles has earned a promising role in the area of nanotechnology due to their biomedical applications. This study describes the synthesis of silver nanoparticles (AgNPs) using Mikania micrantha leaf extract and its functional activities against cancer. The synthesis of AgNPs was confirmed using Ultraviolet-Visible (UV-Vis) spectrum that exhibited an absorption band at 459 nm. The bioactive compounds of M. micrantha leaf extract that functioned as reducing and capping agents were confirmed by a shift in the absorption bands in Fourier Transform Infra-red Spectroscopy (FT-IR). Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) studies validated the spherical shape and size of AgNPs, respectively. Energy Dispersive Spectroscopy (EDS) analysis revealed the presence of elemental silver. The crystalline nature of AgNPs was confirmed by the X-ray Diffraction Analysis (XRD). AgNPs effectively induced cytotoxicity and prevented A549 cell colony formation in a dose-dependent manner. Treatment of A549 cells with AgNPs also increased DNA damage, which was coupled with elevated lipid peroxidation and decreased antioxidant enzymes such as glutathione (GSH), glutathione-s-transferase (GST), and superoxide dismutase (SOD). Following AgNPs treatment, the mRNA expression levels of the pro-apoptotic genes as well as the activities of caspases were significantly elevated in A549 cells while the expression levels of anti-apoptotic genes were downregulated. Our study demonstrates the potential of the synthesised AgNPs for cancer therapy possibly targeting the apoptotic pathway.


Assuntos
Adenocarcinoma de Pulmão , Nanopartículas Metálicas , Mikania , Humanos , Prata/farmacologia , Prata/química , Caspases , Nanopartículas Metálicas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Apoptose , Glutationa , Adenocarcinoma de Pulmão/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia
2.
ACS Omega ; 7(48): 44346-44359, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36506147

RESUMO

Green synthesis of metal nanoparticles is a rapidly growing research area in the field of nanotechnology because of their biomedical applications. This study describes the synthesis of silver nanoparticles (AgNPs) using Spilanthes acmella leaf extract and its ameliorative effects against doxorubicin-induced toxicity. The formation of AgNPs was confirmed by a ultraviolet-visible (UV-vis) spectrum that revealed an absorption band at 430 nm. A shift in the absorption bands in Fourier-transform infrared spectroscopy (FT-IR) confirmed the bioactive molecules of S. acmella leaf extract that acted as a reducing and capping agent. The spherical shape of AgNPs was confirmed by scanning electron microscope (SEM) analysis, and the presence of elemental silver was indicated by energy dispersive X-ray spectroscopy (EDS) analysis. X-ray diffraction (XRD) analysis revealed that the crystalline size of the synthesized AgNPs was 6.702 nm. Treatment of Dalton's lymphoma ascites (DLA) mice with 20 mg/kg of doxorubicin (DOX) significantly increased the activities of serum toxicity markers including aspartate amino-transferase (AST), alanine amino-transferase (ALT), and lactate dehydrogenase (LDH). However, compared to DOX alone treatment, the coadministration of DOX and AgNPs reduced AST, ALT, and LDH activities. DOX alone treatment reduced glutathione (GSH) contents and decreased the activities of glutathione-s-transferase (GST) and superoxide dismutase (SOD) in DLA mice. However, the administration of AgNPs to DOX-treated DLA mice increased GSH content and the activities of GST and SOD. Consistently, biosynthesized AgNPs were found to possess significantly higher free-radical scavenging activities when compared to the S. acmella leaf extract, as measured by ABTS, DPPH, and O2 •- assays. The biosynthesized AgNPs also showed significant inhibitory activities against erythrocyte hemolysis and lipid peroxidation in the liver homogenate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...