Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Antimicrob Chemother ; 70(10): 2770-4, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26169555

RESUMO

OBJECTIVES: This study aims to investigate the landscape of the mobile genome, with a focus on antibiotic resistance-associated factors in carbapenem-resistant Klebsiella pneumoniae. METHODS: The mobile genome of the completely sequenced K. pneumoniae HS11286 strain (an ST11, carbapenem-resistant, near-pan-resistant, clinical isolate) was annotated in fine detail. The identified mobile genetic elements were mapped to the genetic contexts of resistance genes. The blaKPC-2 gene and a 26 kb region containing 12 clustered antibiotic resistance genes and one biocide resistance gene were deleted, and the MICs were determined again to ensure that antibiotic resistance had been lost. RESULTS: HS11286 contains six plasmids, 49 ISs, nine transposons, two separate In2-related integron remnants, two integrative and conjugative elements (ICEs) and seven prophages. Sixteen plasmid-borne resistance genes were identified, 14 of which were found to be directly associated with Tn1721-, Tn3-, Tn5393-, In2-, ISCR2- and ISCR3-derived elements. IS26 appears to have actively moulded several of these genetic regions. The deletion of blaKPC-2, followed by the deletion of a 26 kb region containing 12 clustered antibiotic resistance genes, progressively decreased the spectrum and level of resistance exhibited by the resultant mutant strains. CONCLUSIONS: This study has reiterated the role of plasmids as bearers of the vast majority of resistance genes in this species and has provided valuable insights into the vital role played by ISs, transposons and integrons in shaping the resistance-coding regions in this important strain. The 'resistance-disarmed' K. pneumoniae ST11 strain generated in this study will offer a more benign and readily genetically modifiable model organism for future extensive functional studies.


Assuntos
Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Mapeamento Cromossômico , Elementos de DNA Transponíveis , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Resistência beta-Lactâmica , Ordem dos Genes , Testes de Sensibilidade Microbiana , Plasmídeos/genética
2.
Biochemistry ; 54(2): 434-46, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25437493

RESUMO

Chlorite dismutases (Clds) convert chlorite to O2 and Cl(-), stabilizing heme in the presence of strong oxidants and forming the O═O bond with high efficiency. The enzyme from the pathogen Klebsiella pneumoniae (KpCld) represents a subfamily of Clds that share most of their active site structure with efficient O2-producing Clds, even though they have a truncated monomeric structure, exist as a dimer rather than a pentamer, and come from Gram-negative bacteria without a known need to degrade chlorite. We hypothesized that KpCld, like others in its subfamily, should be able to make O2 and may serve an in vivo antioxidant function. Here, it is demonstrated that it degrades chlorite with limited turnovers relative to the respiratory Clds, in part because of the loss of hypochlorous acid from the active site and destruction of the heme. The observation of hypochlorous acid, the expected leaving group accompanying transfer of an oxygen atom to the ferric heme, is consistent with the more open, solvent-exposed heme environment predicted by spectroscopic measurements and inferred from the crystal structures of related proteins. KpCld is more susceptible to oxidative degradation under turnover conditions than the well-characterized Clds associated with perchlorate respiration. However, wild-type K. pneumoniae has a significant growth advantage in the presence of chlorate relative to a Δcld knockout strain, specifically under nitrate-respiring conditions. This suggests that a physiological function of KpCld may be detoxification of endogenously produced chlorite.


Assuntos
Antioxidantes/metabolismo , Cloretos/metabolismo , Klebsiella pneumoniae/enzimologia , Oxirredutases/metabolismo , Oxigênio/metabolismo , Humanos , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/química , Klebsiella pneumoniae/metabolismo , Modelos Moleculares , Oxirredutases/química , Multimerização Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...