Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(16)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38154138

RESUMO

Solid-state single-photon emitters (SPEs) commonly encounter the limitation of quasi-omnidirectional radiation patterns, which poses challenges in utilizing their emission with conventional optical instruments. In this study, we demonstrate the tailoring of the far-field radiation patterns of SPEs based on colloidal quantum dots (QDs), both theoretically and experimentally, by employing a polymer-based dielectric antenna. We introduce a simple and cost-effective technique, namely low one-photon absorption direct laser writing, to achieve precise coupling of a QD into an all-polymer circular waveguide resonance grating. By optimizing the geometry parameters of the structure using 3D finite-difference time-domain simulations, resonance at the emission wavelength of QDs is achieved in the direction perpendicular to the substrate, resulting in photon streams with remarkably high directivity on both sides of the grating. Theoretical calculations predict beam divergence values below 2°, while experimental measurements using back focal plane imaging yield divergence angles of approximately 8°. Our study contributes to the evaluation of concentric circular grating structures employing low refractive index polymer materials, thereby expanding the possibilities for their application.

2.
Polymers (Basel) ; 15(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37177347

RESUMO

In the field of quantum technology, there has been a growing interest in fully integrated systems that employ single photons due to their potential for high performance and scalability. Here, a simple method is demonstrated for creating on-chip 3D printed polymer waveguide-coupled single-photon emitters based on colloidal quantum dots (QDs). By using a simple low-one photon absorption technique, we were able to create a 3D polymeric crossed-arc waveguide structure with a bright QD on top. These waveguides can conduct both excitation laser and emitted single photons, which facilitates the characterization of single-photon signals at different outputs with a conventional confocal scanning system. To optimize the guiding effect of the polymeric waveguide structures, comprehensive 3D finite-difference time-domain simulations were performed. Our method provides a straightforward and cost-effective way to integrate high-performance single-photon sources with on-chip photonic devices, enabling scalable and versatile quantum photonic circuits for various applications.

3.
Polymers (Basel) ; 15(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36616365

RESUMO

We report an original method for directly fabricating gold nanoparticles (Au NPs) in a polymer matrix using a thermal treatment technique and theoretically and experimentally investigate their plasmonic properties. The polymeric-metallic nanocomposite samples were first prepared by simply mixing SU-8 resist and Au salt with different concentrations. The Au NPs growth was triggered inside the polymer through a thermal process on a hot plate and in air environment. The Au NPs creation was confirmed by the color of the nanocomposite thin films and by absorption spectra measurements. The Au NPs sizes and distributions were confirmed by transmission electron microscope measurements. It was found that the concentrations of Au salt and the annealing temperatures and durations are all crucial for tuning the Au NPs sizes and distributions, and, thus, their optical properties. We also propose a simulation model for calculations of Au NPs plasmonic properties inside a polymer medium. We realized that Au NPs having large sizes (50 to 100 nm) play an important role in absorption spectra measurements, as compared to the contribution of small NPs (<20 nm), even if the relative amount of big Au NPs is small. This simple, low-cost, and highly reproducible technique allows us to obtain plasmonic NPs within polymer thin films on a large scale, which can be potentially applied to many fields.

4.
Opt Express ; 29(19): 29841-29856, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34614721

RESUMO

We demonstrate a one-step fabrication method to realize desired gold (Au) nanoholes arrays by using a one-photon absorption based direct laser writing technique. Thanks to the optically induced thermal effect of Au material at 532 nm excitation wavelength, the local temperature at the laser focus area can reach as high as 600°C, which induces an evaporation of the Au thin film resulting in a metallic nanohole. By controlling the laser spot movement and exposure time, different two-dimensional Au nanoholes structures with periodicity as small as 500 nm have been demonstrated. This allows obtaining plasmonic nanostructures in a single step without needing the preparation of polymeric template and lift-off process. By this direct fabrication technique, the nanoholes do not have circular shape as the laser focusing spot, due to the non-uniform heat transfer in a no-perfect flat Au film. However, the FDTD simulation results and the experimental measurement of the transmission spectra show that the properties of fabricated plasmonic nanoholes arrays are very close to those of ideal plasmonic nanostructures. Actually, the plasmonic resonance depends strongly on the periodicity of the metallic structures while the heterogeneous form of the holes simply enlarges the resonant peak. Furthermore, it is theoretically demonstrated that the non-perfect circular shape of the Au hole allows amplifying the electromagnetic field of the resonant peak by several times as compared to the case of perfect circular shape. This could be an advantage for application of this fabricated structure in laser and nonlinear optics domains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...