Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol J ; 13(10): e1700217, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29802757

RESUMO

Despite great efforts to control and modify gene expression of Chinese Hamster Ovary (CHO) cells by conventional genetic engineering approaches, i.e. overexpression or knockdown/-out, subclonal variation, induced unknown regulatory effects as well as overexpression stress are still a major hurdle for efficient cell line engineering and for unequivocal characterization of gene function. The use of epigenetic modulators - key players in CHO clonal heterogeneity - has only been marginally addressed so far. Here, we present the application of an alternative engineering strategy in CHO cells by utilizing targeted epigenetic editing tools that enable the turning-on or -off of genes without altering the genomic sequence. The present, but silent beta-galactoside alpha-2,6-sialyltransferase 1 (ST6GAL1) gene is activated by targeting the catalytic domain (CD) of Ten-Eleven Translocation methylcytosine dioxygenase 1 (TET1) via deactivated Cas9 (dCas9) to its methylated promoter. Stable upregulation in up to 60% of transfected cells is achieved over a time span of more than 80 days. No difference in growth and recombinant protein productivity is observed between activated and control cultures. Re-silencing by targeted methylation via DNA methyltransferase (DNMT) 3A-CD resulted in an up to 5.4-fold reduction of ST6GAL1 mRNA expression in ST6GAL1 expressing cells. This proof-of-concept demonstrates the feasibility of using epigenetic editing tools to efficiently modulate gene expression and provide a promising complement to conventional genetic engineering in CHO cells.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Epigenômica/métodos , Galactosídeos/genética , Edição de Genes/métodos , Sialiltransferases/genética , Animais , Biocatálise , Células CHO , Cricetulus , Metilases de Modificação do DNA/metabolismo , Escherichia coli , Expressão Gênica , Engenharia Genética/métodos , Genômica , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...