Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 334: 138872, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37182716

RESUMO

In terrestrial ecosystems, the nitrogen dynamics, including N2O production, are majorly regulated by a complex consortium of microbes favored by different substrates and environmental conditions. To better predict the daily, seasonal and annual variation in N2O fluxes, it is critical to estimate the temperature sensitivity of different microbial groups for N2O fluxes under oxic and suboxic conditions prevalent in soil and wetlands. Here, we studied the temperature sensitivity of two groups of ammonia oxidizers, archaea (AOA) and bacteria (AOB), in relation to N2O fluxes through both nitrification and nitrifier-denitrification pathways across a wide temperature gradient (10-55 °C). Using square root theory (SQRT) and macromolecular rate theory (MMRT) models, we estimated thermodynamic parameters and cardinal temperatures, including maximum temperature sensitivity (TSmax). The distinction between N2O pathways was facilitated by microbial-specific inhibitors (PTIO and C2H2) and controlled oxygen supply environments (oxic: ambient level; and suboxic: ∼4%). We found that nitrification supported by AOA (NtA) and AOB (NtB) dominated N2O production in an oxic climate, while only AOB-supported nitrifier-denitrification (NDB) majorly contributed (>90%) to suboxic N2O budget. The models predicted significantly higher optimum temperature (Topt) and TSmax for NtA and NDB compared to NtB. Intriguingly, both NtB and NDB exhibited significantly wider temperature ranges than NtA. Altogether, our results suggest that temperature and oxygen supply control the dominance of specific AOA- and AOB-supported N2O pathways in soil and sediments. This emergent understanding can potentially contribute toward novel targeted N2O inhibitors for GHG mitigation under global warming.


Assuntos
Amônia , Ecossistema , Amônia/metabolismo , Oxirredução , Microbiologia do Solo , Archaea/metabolismo , Nitrificação , Solo/química , Temperatura , Oxigênio/metabolismo , Óxido Nitroso/análise
2.
Bioresour Technol ; 343: 126125, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34653623

RESUMO

This study is aimed to comprehend the treatment of non-submerged attached growth systems using bio-sponge, bio-cord, and bio-cloth media. Three reactors were set up with internal recirculation ratio of 1 (IR = 1) and similar media surface area. Bio-sponge and bio-cloth reactors showed removal of COD (79 vs. 76%) and NH4+-N (78 vs. 73%). While bio-cord treatment was deteriorated due to time-dependent process. Multiple linear regression revealed that alkalinity governed the formation degree of the anaerobic zone in bio-sponges, partially affecting nitrification. Increasing IR from 1 to 3 caused sloughing of the attached biomass and was positively correlated with effluent nitrite nitrogen concentration, indicating the sensitivity of nitrification to spatial distribution effects. In addition, bio-sponge system obtained superior performance at IR of 2 while bio-cloth one might be also an effective media for wastewater treatment if having good durability.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Reatores Biológicos , Nitrificação , Nitrogênio/análise
3.
Chemosphere ; 289: 133049, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34838835

RESUMO

Understanding the environmental niche segregation of ammonia-oxidizing archaea (AOA) and bacteria (AOB) and its impact on their relative contributions to nitrification and nitrous oxide (N2O) production is essential for predicting N2O dynamics within an ecosystem. Here, we used ammonia oxidizer-specific inhibitors to measure the differential contributions of AOA and AOB to potential ammonia oxidization (PAO) and N2O fluxes over pH (4.0-9.0) and temperature (10-45 °C) gradients in five soils and three wetland sediments. AOA and AOB activities were differentiated using PTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide), 1-octyne, and acetylene. We used square root growth (SQRT) and macromolecular rate theory (MMRT) models to estimate cardinal temperatures and thermodynamic characteristics for AOA- and AOB-dominated PAO and N2O fluxes. We found that AOA and AOB occupied different niches for PAO, and soil temperature was the major determinant of niche specialization. SQRT and MMRT models predicted a higher optimum temperature for AOA-dominated PAO and N2O fluxes compared with those of AOB. Additionally, PAO was dominated by AOA in acidic conditions, whereas both AOA- and AOB-dominated N2O fluxes decreased with increasing pH. Consequently, net N2O fluxes (AOA and AOB) under acidic conditions were approximately one to three-fold higher than those observed in alkaline conditions. Moreover, structural equation and linear regression modeling confirmed a significant positive correlation (R2 = 0.45, p < 0.01) between PAO and N2O fluxes. Collectively, these results show the influence of ammonia oxidizer responses to temperature and pH on nitrification-driven N2O fluxes, highlighting the potential for mitigating N2O emissions via pH manipulation.


Assuntos
Amônia , Solo , Archaea , Ecossistema , Nitrificação , Oxirredução , Microbiologia do Solo
4.
RSC Adv ; 8(4): 1808-1819, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35542592

RESUMO

Superhydrophobic membranes are necessary for effective membrane-based seawater desalination. This paper presents the successful fabrication of a novel electrospun nanofibrous membrane composed of polysulfone and Cera flava, which represents a novel class of enhanced performance membranes consisting of a superhydrophobic nanofibrous layer and hydrophobic polypropylene (PP). Cera flava, which helps lower the surface energy, was found to be the ideal additive for increasing the hydrophobicity of the polysulfone (PSF) polymeric solution because of its components such as long-chain hydrocarbons, free acids, esters, and internal chain methylene carbons. In the fabricated membrane, consisting of 10 v/v% Cera flava, the top PSF-CF nanofibrous layer is active and the lower PP layer is supportive. The hybrid membrane possesses superhydrophobicity, with an average contact angle of approximately 162°, and showed high performance in terms of rejection and water flux. This work also examined the surface area, pore size distribution, fiber diameter, surface roughness, mechanical strength, water flux, and rejection percentage of the membrane. The salt rejection was above 99.8%, and a high permeate flux of approximately 6.4 LMH was maintained for 16 h of operation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...