Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging Cell ; 20(11): e13489, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34704342

RESUMO

A hallmark of advanced maternal age is a significant increase in meiotic chromosome segregation errors, resulting in early miscarriages and congenital disorders. These errors most frequently occur during meiosis I (MI). The spindle assembly checkpoint (SAC) prevents chromosome segregation errors by arresting the cell cycle until proper chromosome alignment is achieved. Unlike in mitosis, the SAC in oocytes is desensitized, allowing chromosome segregation in the presence of improperly aligned chromosomes. Whether SAC integrity further deteriorates with advancing maternal age, and if this decline contributes to increased segregation errors remains a fundamental question. In somatic cells, activation of the SAC depends upon Aurora kinase B (AURKB), which functions to monitor kinetochore-microtubule attachments and recruit SAC regulator proteins. In mice, oocyte-specific deletion of AURKB (Aurkb cKO) results in an increased production of aneuploid metaphase II-arrested eggs and premature age-related infertility. Here, we aimed to understand the cause of the short reproductive lifespan and hypothesized that SAC integrity was compromised. In comparing oocytes from young and sexually mature Aurkb cKO females, we found that SAC integrity becomes compromised rapidly with maternal age. We show that the increased desensitization of the SAC is driven by reduced expression of MAD2, ZW10 and Securin proteins, key contributors to the SAC response pathway. The reduced expression of these proteins is the result of altered protein homeostasis, likely caused by the accumulation of reactive oxygen species. Taken together, our results demonstrate a novel function for AURKB in preserving the female reproductive lifespan possibly by protecting oocytes from oxidative stress.


Assuntos
Envelhecimento/metabolismo , Aurora Quinase B/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/genética , Meiose/genética , Reprodução/genética , Transdução de Sinais/genética , Fuso Acromático/metabolismo , Envelhecimento/genética , Aneuploidia , Animais , Aurora Quinase B/genética , Aurora Quinase C/genética , Aurora Quinase C/metabolismo , Segregação de Cromossomos/genética , Cromossomos de Mamíferos/metabolismo , Feminino , Deleção de Genes , Idade Materna , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oócitos/metabolismo
2.
Mol Biol Cell ; 32(8): 712-721, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33596090

RESUMO

Similar to other core biological processes, the vast majority of cell division components are essential for viability across human cell lines. However, recent genome-wide screens have identified a number of proteins that exhibit cell line-specific essentiality. Defining the behaviors of these proteins is critical to our understanding of complex biological processes. Here, we harness differential essentiality to reveal the contributions of the four-subunit centromere-localized CENP-O complex, whose precise function has been difficult to define. Our results support a model in which the CENP-O complex and BUB1 act in parallel pathways to recruit a threshold level of PLK1 to mitotic kinetochores, ensuring accurate chromosome segregation. We demonstrate that targeted changes to either pathway sensitizes cells to the loss of the other component, resulting in cell-state dependent requirements. This approach also highlights the advantage of comparing phenotypes across diverse cell lines to define critical functional contributions and behaviors that could be exploited for the targeted treatment of disease.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Histonas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Centrômero/metabolismo , Centrômero/fisiologia , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/fisiologia , Segregação de Cromossomos , Histonas/genética , Histonas/fisiologia , Humanos , Cinetocoros/fisiologia , Mitose/fisiologia , Ligação Proteica , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Quinase 1 Polo-Like
3.
Curr Biol ; 28(21): 3458-3468.e5, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30415701

RESUMO

Errors in chromosome segregation during female meiosis I occur frequently, and aneuploid embryos account for 1/3 of all miscarriages in humans [1]. Unlike mitotic cells that require two Aurora kinase (AURK) homologs to help prevent aneuploidy (AURKA and AURKB), mammalian germ cells also require a third (AURKC) [2, 3]. AURKA is the spindle-pole-associated homolog, and AURKB/C are the chromosome-localized homologs. In mitosis, AURKB has essential roles as the catalytic subunit of the chromosomal passenger complex (CPC), regulating chromosome alignment, kinetochore-microtubule attachments, cohesion, the spindle assembly checkpoint, and cytokinesis [4, 5]. In mouse oocyte meiosis, AURKC takes over as the predominant CPC kinase [6], although the requirement for AURKB remains elusive [7]. In the absence of AURKC, AURKB compensates, making defining potential non-overlapping functions difficult [6, 8]. To investigate the role(s) of AURKB and AURKC in oocytes, we analyzed oocyte-specific Aurkb and Aurkc single- and double-knockout (KO) mice. Surprisingly, we find that double KO female mice are fertile. We demonstrate that, in the absence of AURKC, AURKA localizes to chromosomes in a CPC-dependent manner. These data suggest that AURKC prevents AURKA from localizing to chromosomes by competing for CPC binding. This competition is important for adequate spindle length to support meiosis I. We also describe a unique requirement for AURKB to negatively regulate AURKC to prevent aneuploidy. Together, our work reveals oocyte-specific roles for the AURKs in regulating each other's localization and activity. This inter-kinase regulation is critical to support wild-type levels of fecundity in female mice.


Assuntos
Aurora Quinase A/genética , Aurora Quinase B/genética , Aurora Quinase C/genética , Meiose , Oócitos/metabolismo , Aneuploidia , Animais , Aurora Quinase A/metabolismo , Aurora Quinase B/metabolismo , Aurora Quinase C/metabolismo , Segregação de Cromossomos/genética , Feminino , Fertilidade/genética , Camundongos
4.
J Vis Exp ; (134)2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29708548

RESUMO

Embryonic aneuploidy is the major genetic cause of infertility in humans. Most of these events originate during female meiosis, and albeit positively correlated with maternal age, age alone is not always predictive of the risk of generating an aneuploid embryo. Therefore, gene variants might account for incorrect chromosome segregation during oogenesis. Given that access to human oocytes is limited for research purposes, a series of assays were developed to study human gene function during meiosis I using mouse oocytes. First, messenger RNA (mRNA) of the gene and gene variant of interest are microinjected into prophase I-arrested mouse oocytes. After allowing time for expression, oocytes are synchronously released into meiotic maturation to complete meiosis I. By tagging the mRNA with a sequence of a fluorescent reporter, such as green fluorescent protein (Gfp), the localization of the human protein can be assessed in addition to the phenotypic alterations. For example, gain or loss of function can be investigated by establishing experimental conditions that challenge the gene product to fix meiotic errors. Although this system is advantageous in investigating human protein function during oogenesis, adequate interpretation of results should be undertaken given that protein expression is not at endogenous levels and, unless controlled for (i.e. knocked out or down), murine homologs are also present in the system.


Assuntos
Segregação de Cromossomos/genética , Meiose/genética , Oócitos/fisiologia , Oogênese/genética , Animais , Feminino , Humanos , Camundongos , Oócitos/citologia
5.
Trends Genet ; 33(5): 349-363, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28359584

RESUMO

The aurora kinases (AURKs) comprise an evolutionarily conserved family of serine/threonine kinases involved in mitosis and meiosis. While most mitotic cells express two AURK isoforms (AURKA and AURKB), mammalian germ cells also express a third, AURKC. Although much is known about the functions of the kinases in mitosis, less is known about how the three isoforms function to coordinate meiosis. This review is aimed at describing what is known about the three isoforms in female meiosis, the similarities and differences between kinase functions, and speculates as to why mammalian germ cells require expression of three AURKs instead of two.


Assuntos
Aurora Quinase A/genética , Aurora Quinase B/genética , Aurora Quinase C/genética , Oócitos/crescimento & desenvolvimento , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/crescimento & desenvolvimento , Humanos , Meiose/genética , Camundongos , Oócitos/metabolismo , Oogênese/genética
6.
Mol Hum Reprod ; 23(6): 406-416, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369513

RESUMO

STUDY QUESTION: Are single nucleotide variants (SNVs) in Aurora kinases B and C (AURKB, AURKC) associated with risk of aneuploid conception? SUMMARY ANSWER: Two SNVs were found in patients with extreme aneuploid concepti rates with respect to their age; one variant, AURKC p.I79V, is benign, while another, AURKB p.L39P, is a potential gain-of-function mutant with increased efficiency in promoting chromosome alignment. WHAT IS KNOWN ALREADY: Maternal age does not always predict aneuploidy risk, and rare gene variants can be drivers of disease. The AURKB and AURKC regulate chromosome segregation, and are associated with reproductive impairments in mouse and human. STUDY DESIGN, SIZE, DURATION: An extreme phenotype sample selection scheme was performed for variant discovery. Ninety-six DNA samples were from young patients with higher than average embryonic aneuploidy rates and an additional 96 DNA samples were from older patients with lower than average aneuploidy rates. PARTICIPANTS/MATERIALS, SETTING, METHODS: Using the192 DNA samples, the coding regions of AURKB and AURKC were sequenced using next generation sequencing. To assess biological significance, we expressed complementary RNA encoding the human variants in mouse oocytes. Assays such as determining subcellular localization and assessing catalytic activity were performed to determine alterations in protein function during meiosis. MAIN RESULTS AND THE ROLE OF CHANCE: Ten SNVs were identified using three independent variant-calling methods. Two of the SNVs (AURKB p.L39P and AURKC p.I79V) were non-synonymous and identified by at least two variant-identification methods. The variant encoding AURKC p.I79V, identified in a young woman with a higher than average rate of aneuploid embryos, showed wild-type localization pattern and catalytic activity. On the other hand, the variant encoding AURKB p.L39P, identified in an older woman with lower than average rates of aneuploid embryos, increased the protein's ability to regulate alignment of chromosomes at the metaphase plate. These experiments were repeated three independent times using 2-3 mice for each trial. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Biological significance of the human variants was assessed in an in vitro mouse oocyte model where the variants are over-expressed. Therefore, the human protein may not function identically to the mouse homolog, or the same in mouse oocytes as in human oocytes. Furthermore, supraphysiological expression levels may not accurately reflect endogenous activity. Moreover, the evaluated variants were identified in one patient each, and no trial linking the SNV to pregnancy outcomes was conducted. Finally, the patient aneuploidy rates were established by performing comprehensive chromosome screening in blastocysts, and because of the link between female gamete aneuploidy giving rise to aneuploid embryos, we evaluate the role of the variants in Meiosis I. However, it is possible that the chromosome segregation mistake arose during Meiosis II or in mitosis in the preimplantation embryo. Their implications in human female meiosis and aneuploidy risk remain to be determined. WIDER IMPLICATIONS OF THE FINDINGS: The data provide evidence that gene variants exist in reproductively younger or advanced aged women that are predictive of the risk of producing aneuploid concepti in humans. Furthermore, a single amino acid in the N-terminus of AURKB is a gain-of-function mutant that could be protective of euploidy. STUDY FUNDING/COMPETING INTERESTS: This work was supported by a Research Grant from the American Society of Reproductive Medicine and support from the Charles and Johanna Busch Memorial Fund at Rutgers, the State University of NJ to K.S. and the Foundation for Embryonic Competence, Inc to N.T. The authors declare no conflicts of interest.


Assuntos
Aneuploidia , Aurora Quinase B/genética , Aurora Quinase C/genética , Oócitos/metabolismo , Polimorfismo de Nucleotídeo Único , Animais , Aurora Quinase B/metabolismo , Aurora Quinase C/metabolismo , Segregação de Cromossomos , Cromossomos Humanos Par 17/química , Cromossomos Humanos Par 19/química , Embrião de Mamíferos , Feminino , Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Meiose/genética , Camundongos , Oócitos/patologia , Gravidez
7.
Chromosoma ; 126(3): 351-364, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27837282

RESUMO

Several aspects of meiosis are impacted by the absence of centrosomes in oocytes. Here, we review four aspects of meiosis I that are significantly affected by the absence of centrosomes in oocyte spindles. One, microtubules tend to assemble around the chromosomes. Two, the organization of these microtubules into a bipolar spindle is directed by the chromosomes. Three, chromosome bi-orientation and attachment to microtubules from the correct pole require modification of the mechanisms used in mitotic cells. Four, chromosome movement to the poles at anaphase cannot rely on polar anchoring of spindle microtubules by centrosomes. Overall, the chromosomes are more active participants during acentrosomal spindle assembly in oocytes, compared to mitotic and male meiotic divisions where centrosomes are present. The chromosomes are endowed with information that can direct the meiotic divisions and dictate their own behavior in oocytes. Processes beyond those known from mitosis appear to be required for their bi-orientation at meiosis I. As mitosis occurs without centrosomes in many systems other than oocytes, including all plants, the concepts discussed here may not be limited to oocytes. The study of meiosis in oocytes has revealed mechanisms that are operating in mitosis and will probably continue to do so.


Assuntos
Cromossomos/genética , Meiose , Oócitos/citologia , Fuso Acromático/metabolismo , Animais , Cromossomos/metabolismo , Feminino , Humanos , Masculino , Mitose , Oócitos/metabolismo , Fuso Acromático/genética
8.
J Cell Sci ; 129(19): 3648-3660, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27562071

RESUMO

Meiotic oocytes lack classic centrosomes and, therefore, bipolar spindle assembly depends on clustering of acentriolar microtubule-organizing centers (MTOCs) into two poles. However, the molecular mechanism regulating MTOC assembly into two poles is not fully understood. The kinase haspin (also known as GSG2) is required to regulate Aurora kinase C (AURKC) localization at chromosomes during meiosis I. Here, we show that inhibition of haspin perturbed MTOC clustering into two poles and the stability of the clustered MTOCs. Furthermore, we show that AURKC localizes to MTOCs in mouse oocytes. Inhibition of haspin perturbed the localization of AURKC at MTOCs, and overexpression of AURKC rescued the MTOC-clustering defects in haspin-inhibited oocytes. Taken together, our data uncover a role for haspin as a regulator of bipolar spindle assembly by regulating AURKC function at acentriolar MTOCs in oocytes.


Assuntos
Aurora Quinase C/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Oócitos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Metáfase , Camundongos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Transporte Proteico , Fuso Acromático/metabolismo
9.
J Cell Sci ; 127(Pt 23): 5066-78, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25315835

RESUMO

Meiosis I (MI), the division that generates haploids, is prone to errors that lead to aneuploidy in females. Haspin is a kinase that phosphorylates histone H3 on threonine 3, thereby recruiting Aurora kinase B (AURKB) and the chromosomal passenger complex (CPC) to kinetochores to regulate mitosis. Haspin and AURKC, an AURKB homolog, are enriched in germ cells, yet their significance in regulating MI is not fully understood. Using inhibitors and overexpression approaches, we show a role for haspin during MI in mouse oocytes. Haspin-perturbed oocytes display abnormalities in chromosome morphology and alignment, improper kinetochore-microtubule attachments at metaphase I and aneuploidy at metaphase II. Unlike in mitosis, kinetochore localization remained intact, whereas the distribution of the CPC along chromosomes was absent. The meiotic defects following haspin inhibition were similar to those observed in oocytes where AURKC was inhibited, suggesting that the correction of microtubule attachments during MI requires AURKC along chromosome arms rather than at kinetochores. Our data implicate haspin as a regulator of the CPC and chromosome segregation during MI, while highlighting important differences in how chromosome segregation is regulated between MI and mitosis.


Assuntos
Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Prófase Meiótica I , Oócitos/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Adenosina Trifosfatases/metabolismo , Aneuploidia , Animais , Aurora Quinase C/antagonistas & inibidores , Aurora Quinase C/metabolismo , Células Cultivadas , Segregação de Cromossomos , Proteínas de Ligação a DNA/metabolismo , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cinetocoros/enzimologia , Prófase Meiótica I/efeitos dos fármacos , Camundongos , Microtúbulos/enzimologia , Complexos Multiproteicos/metabolismo , Oócitos/efeitos dos fármacos , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Transdução de Sinais , Treonina , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...