Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Behav ; 167: 194-201, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27654062

RESUMO

Previous rodent studies showed that when injected into the brain, free fatty acids (FFAs) reduced food intake in an oleate-specific manner. The present study was performed to test whether food intake is regulated by circulating FFAs in an oleate-specific manner. Male Wistar rats received an intravenous infusion of olive, safflower, or coconut oil (100mg/h), together with heparin, to raise circulating oleate, linoleate, or palmitate, respectively, and their effects on overnight food intake were evaluated. Compared to other oils, olive oil infusion showed a significantly greater effect to reduce food intake (P<0.01). Total caloric intake, the sum of the calories from the diet and infused oil, was significantly reduced with olive oil (P<0.01) but not with coconut or safflower oil infusion, suggesting an oleate-specific effect on caloric intake. To further test this idea, different groups of rats received an intravenous infusion of oleate, linoleate, or octanoate (0.5mg/h). Oleate infusion decreased overnight food intake by 26% (P<0.001), but no significant effect was seen with linoleate, octanoate, or vehicle infusion (P>0.05). The effects of olive oil or oleate infusion could not be explained by changes in plasma glucose, insulin, leptin, or total FFA levels. The olive oil effect on food intake was not reduced in vagotomized rats, suggesting that oleate sensing may not involve peripheral sensors. In contrast, olive oil's effect was attenuated in high-fat-fed rats, suggesting that this effect is regulated (or impaired) under physiological (or pathological) conditions. Taken together, the present study provides evidence that circulating oleate is sensed by the brain differentially from other FFAs to control feeding in rats.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Ácidos Graxos/sangue , Ácido Oleico/administração & dosagem , Análise de Variância , Animais , Glicemia , Cromatografia Líquida de Alta Pressão , Ritmo Circadiano , Ingestão de Alimentos/fisiologia , Ingestão de Energia/efeitos dos fármacos , Ingestão de Energia/fisiologia , Ácidos Graxos/administração & dosagem , Infusões Intravenosas , Insulina/sangue , Leptina/sangue , Luz , Masculino , Ratos , Ratos Wistar , Fatores de Tempo , Vagotomia
2.
Am J Physiol Endocrinol Metab ; 305(1): E78-88, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23651844

RESUMO

Blood glucose concentration is tightly regulated by the rate of insulin secretion and clearance, a process partially controlled by sensory neurons serving as metabolic sensors in relevant tissues. The activity of these neurons is regulated by the products of metabolism which regulate transmitter release, and recent evidence suggests that neuronally expressed ion channels of the transient receptor potential (TRP) family function in this critical process. Here, we report the novel finding that the cold and menthol-gated channel TRPM8 is necessary for proper insulin homeostasis. Mice lacking TRPM8 respond normally to a glucose challenge while exhibiting prolonged hypoglycemia in response to insulin. Additionally, Trpm8-/- mice have increased rates of insulin clearance compared with wild-type animals and increased expression of insulin-degrading enzyme in the liver. TRPM8 channels are not expressed in the liver, but TRPM8-expressing sensory afferents innervate the hepatic portal vein, suggesting a TRPM8-mediated neuronal control of liver insulin clearance. These results demonstrate that TRPM8 is a novel regulator of serum insulin and support the role of sensory innervation in metabolic homeostasis.


Assuntos
Glicemia/metabolismo , Hipoglicemia/genética , Insulina/metabolismo , Células Receptoras Sensoriais/metabolismo , Canais de Cátion TRPM/genética , Animais , Plasmídeos de Bacteriocinas , Diabetes Mellitus Experimental/metabolismo , Homeostase/fisiologia , Hipoglicemia/metabolismo , Células Secretoras de Insulina/metabolismo , Fígado/irrigação sanguínea , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Veia Porta/inervação , Ratos , Canais de Cátion TRPM/metabolismo
3.
J Biol Chem ; 285(20): 15333-15345, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20308074

RESUMO

Obesity represents a state of chronic, low grade inflammation and is associated with infiltration of increased numbers of adipose tissue macrophages (ATMs). Diet-induced obesity leads to an increase in non-inflammatory M1-like ATMs displaying the CD11c surface marker. We assessed the function of CD11c-positive ATMs when insulin resistant high fat diet (HFD) mice become insulin-sensitive after switching from HFD to normal chow (NC). HFD mice rapidly become insulin-sensitive in all major insulin-target tissues, including muscle, liver, and adipose tissue, after the diet switch. In adipose tissue the CD11c-positive macrophages remain constant in number despite the presence of insulin sensitivity, but these macrophages now assume a new phenotype in which they no longer exhibit increased inflammatory pathway markers. Adipose tissue markers of apoptosis and necrosis were elevated on HFD and remain high after the HFD --> NC diet switch. Furthermore, ATM accumulation preceded detectable adipocyte necrosis at the early phase of HFD. Together, these results indicate that 1) CD11c-positive M1-like ATMs can exhibit phenotypic plasticity and that the polarization of these cells between inflammatory and non-inflammatory states is well correlated to the presence of absence of insulin resistance, and 2) adipocyte necrosis and apoptosis can be dissociated from ATM accumulation.


Assuntos
Tecido Adiposo/imunologia , Antígeno CD11c/imunologia , Dieta , Macrófagos/imunologia , Obesidade/imunologia , Tecido Adiposo/citologia , Animais , Apoptose , Sequência de Bases , Primers do DNA , Glucose/administração & dosagem , Imuno-Histoquímica , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase
4.
Am J Physiol Endocrinol Metab ; 298(2): E304-19, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19920214

RESUMO

Impaired estrogen action is associated with the metabolic syndrome in humans. We sought to determine whether impaired estrogen action in female C57Bl6 mice, produced by whole body Esr1 ablation, could recapitulate aspects of this syndrome, including inflammation, insulin resistance, and obesity. Indeed, we found that global knockout (KO) of the estrogen receptor (ER)alpha leads to reduced oxygen uptake and caloric expenditure compared with wild-type (WT) mice. In addition, fasting insulin, leptin, and PAI-1 levels were markedly elevated, whereas adiponectin levels were reduced in normal chow-fed KO. Furthermore, ERalpha-KO mice exhibited impaired glucose tolerance and marked skeletal muscle insulin resistance that was accompanied by the accumulation of bioactive lipid intermediates, inflammation, and diminished PPARalpha, PPARdelta, and UCP2 transcript levels. Although the relative glucose intolerance and insulin resistance phenotype in KO mice became more severe with high-fat feeding, WT mice were refractory to these dietary-induced effects, and this protection coincided with a marked increase in circulating adiponectin and heat shock protein 72 levels in muscle, liver, and fat. These data indicate that ERalpha is critical for the maintenance of whole body insulin action and protection against tissue inflammation during both normal chow and high-fat feeding.


Assuntos
Receptor alfa de Estrogênio/fisiologia , Proteínas de Choque Térmico HSP72/metabolismo , Resistência à Insulina/fisiologia , Síndrome Metabólica/fisiopatologia , Obesidade/fisiopatologia , Adipogenia/fisiologia , Adiponectina/sangue , Análise de Variância , Animais , Gorduras na Dieta/metabolismo , Modelos Animais de Doenças , Receptor alfa de Estrogênio/genética , Ácidos Graxos/metabolismo , Feminino , Inflamação/complicações , Inflamação/imunologia , Inflamação/metabolismo , Resistência à Insulina/imunologia , Síndrome Metabólica/complicações , Síndrome Metabólica/imunologia , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Knockout , Músculo Esquelético/fisiologia , Obesidade/complicações , Obesidade/imunologia , Obesidade/metabolismo , Oxirredução
5.
Proc Natl Acad Sci U S A ; 105(5): 1739-44, 2008 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-18223156

RESUMO

Patients with type 2 diabetes have reduced gene expression of heat shock protein (HSP) 72, which correlates with reduced insulin sensitivity. Heat therapy, which activates HSP72, improves clinical parameters in these patients. Activation of several inflammatory signaling proteins such as c-jun amino terminal kinase (JNK), inhibitor of kappaB kinase, and tumor necrosis factor-alpha, can induce insulin resistance, but HSP 72 can block the induction of these molecules in vitro. Accordingly, we examined whether activation of HSP72 can protect against the development of insulin resistance. First, we show that obese, insulin resistant humans have reduced HSP72 protein expression and increased JNK phosphorylation in skeletal muscle. We next used heat shock therapy, transgenic overexpression, and pharmacologic means to overexpress HSP72 either specifically in skeletal muscle or globally in mice. Herein, we show that regardless of the means used to achieve an elevation in HSP72 protein, protection against diet- or obesity-induced hyperglycemia, hyperinsulinemia, glucose intolerance, and insulin resistance was observed. This protection was tightly associated with the prevention of JNK phosphorylation. These findings identify an essential role for HSP72 in blocking inflammation and preventing insulin resistance in the context of genetic obesity or high-fat feeding.


Assuntos
Proteínas de Choque Térmico HSP72/metabolismo , Hiperinsulinismo/metabolismo , Hiperinsulinismo/terapia , Hipertermia Induzida , Resistência à Insulina , Obesidade/complicações , Adiponectina/sangue , Animais , Glicemia/análise , Proteínas de Choque Térmico HSP72/genética , Humanos , Hiperinsulinismo/etiologia , Quinase I-kappa B/metabolismo , Insulina/sangue , Fígado/metabolismo , MAP Quinase Quinase 4/metabolismo , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Oximas/farmacologia , Fosforilação , Piperidinas/farmacologia
6.
J Biol Chem ; 282(48): 35279-92, 2007 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-17916553

RESUMO

Obesity and type 2 diabetes are characterized by decreased insulin sensitivity, elevated concentrations of free fatty acids (FFAs), and increased macrophage infiltration in adipose tissue (AT). Here, we show that FFAs can cause activation of RAW264.7 cells primarily via the JNK signaling cascade and that TLR2 and TLR4 are upstream of JNK and help transduce FFA proinflammatory signals. We also demonstrate that F4/80(+)CD11b(+)CD11c(+) bone marrow-derived dendritic cells (BMDCs) have heightened proinflammatory activity compared with F4/80(+)CD11b(+)CD11c(-) bone marrow-derived macrophages and that the proinflammatory activity and JNK phosphorylation of BMDCs, but not bone marrow-derived macrophages, was further increased by FFA treatment. F4/80(+)CD11b(+)CD11c(+) cells were found in AT, and the proportion and number of these cells in AT is increased in ob/ob mice and by feeding wild type mice a high fat diet for 1 and 12 weeks. AT F4/80(+)CD11b(+)CD11c(+) cells express increased inflammatory markers compared with F4/80(+)CD11b(+)CD11c(-) cells, and FFA treatment increased inflammatory responses in these cells. In addition, we found that CD11c expression is increased in skeletal muscle of high fat diet-fed mice and that conditioned medium from FFA-treated wild type BMDCs, but not TLR2/4 DKO BMDCs, can induce insulin resistance in L6 myotubes. Together our results show that FFAs can activate CD11c(+) myeloid proinflammatory cells via TLR2/4 and JNK signaling pathways, thereby promoting inflammation and subsequent cellular insulin resistance.


Assuntos
Tecido Adiposo/metabolismo , Ácidos Graxos não Esterificados/metabolismo , MAP Quinase Quinase 4/metabolismo , Macrófagos/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Células da Medula Óssea/metabolismo , Antígeno CD11b/biossíntese , Antígeno CD11c/biossíntese , Inflamação , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Transdução de Sinais
7.
J Clin Invest ; 117(6): 1658-69, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17525798

RESUMO

PPAR gamma is required for fat cell development and is the molecular target of antidiabetic thiazolidinediones (TZDs), which exert insulin-sensitizing effects in adipose tissue, skeletal muscle, and liver. Unexpectedly, we found that inactivation of PPAR gamma in macrophages results in the development of significant glucose intolerance plus skeletal muscle and hepatic insulin resistance in lean mice fed a normal diet. This phenotype was associated with increased expression of inflammatory markers and impaired insulin signaling in adipose tissue, muscle, and liver. PPAR gamma-deficient macrophages secreted elevated levels of factors that impair insulin responsiveness in muscle cells in a manner that was enhanced by exposure to FFAs. Consistent with this, the relative degree of insulin resistance became more severe in mice lacking macrophage PPAR gamma following high-fat feeding, and these mice were only partially responsive to TZD treatment. These findings reveal an essential role of PPAR gamma in macrophages for the maintenance of whole-body insulin action and in mediating the antidiabetic actions of TZDs.


Assuntos
Hipoglicemiantes/farmacologia , Resistência à Insulina/fisiologia , Fígado/metabolismo , Músculo Esquelético/metabolismo , PPAR gama/metabolismo , Tiazolidinedionas/farmacologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Sequência de Bases , Primers do DNA/genética , Perfilação da Expressão Gênica , Fígado/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Músculo Esquelético/efeitos dos fármacos , PPAR gama/deficiência , PPAR gama/genética , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...