Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(10): 7006-7021, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38414994

RESUMO

The demand for a wide array of functional chemicals and materials has experienced a significant surge in tandem with the advancement of civilization. Regrettably, a number of perilous solvents are employed in chemical laboratories and industrial settings, posing significant risks to the well-being of researchers and contributing to environmental degradation through pollution. Eutectogels, which are based on the eutectic concept, may be synthesized by self-assembling or self-polymerization of various components when put under UV irradiation (254 nm). A novel copolymeric deep eutectic solvent (DES) was successfully synthesized, comprising choline chloride (HBA) as the hydrogen bond acceptor, acetamide (HBD) as the hydrogen bond donor, tetraethyl orthosilicate (TEOS), and formic acid. In this study, we present the preparation of four-component ETGs for synthesizing pyridine and chromene derivatives as a reusable catalyst through a multi-component pathway without solvents. The procedure of synthesizing these heterocyclic compounds is free of using toxic solvents and it could be categorized as a green method.

2.
Heliyon ; 9(11): e21274, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027850

RESUMO

In this study, the conversion of monosaccharides to 5-hydroxymethylfurfural (5-HMF) using different deep eutectic solvents (DESs) was investigated in various conditions. Among all the investigated DESs, [ChCl][trichloroacetic acid], based on choline chloride and trichloroacetic acid with the ratio 1:1, showed the highest catalytic activity. A maximum 5-HMF yield was 82 % for 1 h at 100 °C using [ChCl][trichloroacetic acid] as a catalyst from fructose. [ChCl][trichloroacetic acid] could be recovered and reused three times with a slight loss in activity. Our work demonstrated the low-cost and effective method for the synthesis of 5-HMF from carbohydrates.

3.
RSC Adv ; 13(41): 28623-28631, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37780732

RESUMO

In this work, a new procedure for the synthesis of benzo[a]carbazole from 1,3-diketones, primary amines, phenylglyoxal monohydrate, and malononitrile employing a solid acidic catalyst has been developed. The multicomponent reaction provided 3-cyanoacetamide pyrrole as an intermediate and then the formation of benzo[a]carbazole via intramolecular ring closure. The reaction was carried out for 2 h at 240 °C, resulting in the desired product with 73% yield. Acidic sites on the solid acid catalyst, made from rice husk-derived amorphous carbon with a sulfonic acid core (AC-SO3H), provided the best activity. Acidic sites on the surface of the catalyst, including carboxylic, phenolic, and sulfonic acids, were 4.606 mmol g-1 of the total acidity. AC-SO3H demonstrated low cost, low toxicity, porosity, stability, and flexibility of tuning and reusability.

4.
RSC Adv ; 13(18): 12455-12463, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37091625

RESUMO

Deep eutectic solvents (DESs) act as both an organic solvent and a useful catalyst for organic synthesis reactions, especially the synthesis of heterocyclic compounds containing the element nitrogen. DESs exhibit many important properties namely large liquid fields, biodegradability, outstanding thermal stability, and moderate vapor pressure. Amorphous carbon-bearing sulfonic acid groups (AC-SO3H) are one of the new-generation solid acids showing strong acid activity. Based on the simultaneous presence of acidic functional groups such as carboxylic acid, phenolic, and sulfonic acid groups, they exhibit many important activities namely strong Brønsted acid, high surface area, high stability, reusability, and recyclability. In this study, AC-SO3H was made from rice husk via the carbonization and sulfonation processes, and the surface properties and structure were examined using contemporary methods such as FT-IR, P-XRD, TGA, SEM, and EDS. And, [Urea]7[ZnCl2]2 was synthesized from urea and ZnCl2 with a mole ratio of 7 : 2; the structure is defined using FT-IR and TGA. By combining AC-SO3H and [Urea]7[ZnCl2]2 we aim to form an effective catalyst/solvent system for the preparation of polysubstituted imidazole derivatives through the multi-component cyclization reaction from nitrobenzenes, benzil, aldehydes, and ammonium acetate. The major products are obtained with high isolation yields above 60%. To assess the catalyst system's activity, the recovery and reusability of the AC-SO3H/[Urea]7[ZnCl2]2 system were examined with hardly any performance modification. In an effort to create potential enzyme α-glucosidase inhibitors, several novel polysubstituted imidazoles were created. Five of these compounds showed good enzyme α-glucosidase inhibitor activity. The most effective substances were IMI-13, IMI-15, and IMI-20, with IC50 values that were greater than the acarbose at 16.5, 15.8, and 11.6 µM, respectively - the acarbose (IC50, 214.5 µM) as the positive control.

5.
RSC Adv ; 13(3): 1877-1882, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36712648

RESUMO

Among many acidic catalysts, amorphous carbon-supported sulfonic acid (AC-SO3H) has been evaluated as a new-generation solid catalyst with outstanding activity. Because of the -SO3H groups, the surface properties of the amorphous carbon catalyst were improved, which made the catalytic activity of the amorphous carbon-supported sulfonic acid many times greater than that of sulfuric acid. The amorphous carbon-supported sulfonic acid exhibited several advantages such as low cost, non-toxicity, porosity, stability, and easily adjustable chemical surface. In this paper, we introduce a new pathway for the synthesis of pyrazolo[3,4-b]pyridine-5-carboxylate scaffolds from 1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles and aniline at room temperature under ethanol in the presence of AC-SO3H as the catalyst. This method provided the desired products with moderate to good yields. The gram-scale synthesis of the major product was carried out with good yields (up to 80%). This strategy involves a sequential opening/closing cascade reaction. This approach presents several advantages, including room temperature conditions, short reaction time, and operational simplicity.

6.
ACS Omega ; 8(1): 271-278, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36643563

RESUMO

In this paper, we develop a method for Friedel-Crafts acylation using metal triflate in deep eutectic solvents. Various metal triflates were tested and provided good to excellent yields of corresponding ketone products. The density functional theory calculation revealed the metal effects on the formation of active intermediate acylium triflate as well as the acidic condition. The metal triflate in the deep eutectic solvent can be recovered and reused with a little loss in the catalytic activity.

7.
ACS Omega ; 7(20): 17432-17443, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35647469

RESUMO

We report a new pathway to synthesize pyrano[2,3-c]pyrazoles and their binding mode to p38 MAP kinase. Pyrano[2,3-c]pyrazole derivatives have been prepared through a four-component reaction of benzyl alcohols, ethyl acetoacetate, phenylhydrazine, and malononitrile in the presence of sulfonated amorphous carbon and eosin Y as catalysts. All products were characterized by melting point, 1H and 13C NMR, and HRMS (ESI). The products were screened in silico for their binding activities to both the ATP-binding pocket and the lipid-binding pocket of p38 MAP kinase, using a structure-based flexible docking provided by the engine ADFR. The results showed that eight synthesized compounds had a higher affinity to the lipid pocket than to the other target site, which implied potential applications as allosteric inhibitors. Finally, the most biologically active compound, 5, had a binding affinity comparable to those of other proven lipid pocket inhibitors, with affinity to the target pocket reaching -10.9932 kcal/mol, and also had the best binding affinity to the ATP-binding pockets in all of our products. Thus, our research provides a novel pathway for synthesizing pyrano[2,3-c]pyrazoles and bioinformatic evidence for their biological capability to block p38 MAP kinase pockets, which could be useful for developing cancer or immune drugs.

8.
Heliyon ; 7(11): e08309, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34820534

RESUMO

We have developed the green method for the synthesis of benzoxazoles and benzothiazoles with moderate to good yields using imidazolium chlorozincate (II) ionic liquid supported into Fe3O4 nanoparticles (LAIL@MNP) under solvent-free sonication. The reaction was performed under mild conditions and only produced water as a sole byproduct. The reactions under solvent-free sonication showed advantages of faster reaction rate (30 min) and high yields of the products (up to 90%). Moreover, the LAIL@MNP material was easily separated from the reaction mixture and can be recycled for five consecutive runs with a slight decrease in its catalytic performance (from 82 to 73%).

9.
RSC Adv ; 11(35): 21560-21566, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35478777

RESUMO

Electrolytes for dye-sensitized solar cells remain a challenge for large-scale production and commercialization, hindering the wide application of solar cells. We have developed two new electrolyte-based deep eutectic solvents using a mixture of choline chloride with urea and with ethylene glycol for dye-sensitized solar cells. The prominent features of the two deep eutectic solvent electrolytes are simple preparation for large-scale production with inexpensive, available, and nontoxic starting materials and biodegradability. The solar cell devices proceeded in a safe manner as the two deep eutectic solvents afforded low-cost technology and comparative conversion efficiency to a popular ionic liquid, namely 1-ethyl-3-methylimidazolium tetracyanoborate. Results showed that devices with choline chloride and urea electrolyte exhibited improved open circuit voltage values (V OC), while the ones with choline chloride and ethylene glycol showed an increase in the short circuit current (I sc). Characterization of the devices by electrochemical impedance spectroscopy helped explain the effects of their molecular structures on the enhancement of either V OC or I sc values. These new solvents expand the electrolyte choices for designing dye-sensitized solar cells, especially for the purpose of using low-cost and eco-friendly materials for massive production.

10.
RSC Adv ; 10(42): 25358-25363, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35517476

RESUMO

A nano-sized Fe3O4-supported Lewis acid ionic liquid catalyst for the synthesis of polyhydroquinolines and propargylamines under ultrasound irradiation has been developed. LAIL@MNP was synthesized from imidazolium chlorozincate(ii) ionic liquid grafted onto the surface of Fe3O4 nanoparticles and evaluated by FT-IR, TGA, SEM, Raman, TEM, ICP-OES, and EDS. The multicomponent synthesis of polyhydroquinolines and propargylamines proceeded smoothly to afford the desired products in high yields. LAIL@MNP can be separated easily from the reaction mixture and reused for several runs without a significant degradation in catalytic activity.

11.
RSC Adv ; 9(16): 9093-9098, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35517685

RESUMO

A highly efficient method for the synthesis of pyrroles using MIL-53(Al) as a catalyst has been developed under solvent-free sonication. This reaction has a broad substrate scope and high yields were obtained within a short reaction time. Remarkably, no additional additives and volatile organic solvent are required for this method and the MIL-53(Al) could be recovered and reused several times without significant drop-off in catalytic activity.

12.
RSC Adv ; 8(24): 13142-13147, 2018 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35542508

RESUMO

Dye-sensitized Solar Cells (DSCs) based on ruthenium complex N719 as sensitizer have received much attention due to their affordability and high efficiency. However, their best performance is only achieved when using volatile organic solvents as electrolyte solutions, which are unstable under prolonged thermal stress. Thus, we developed a new series of 1-alkenyl-3-methylimidazolium trifluoromethanesulfonate ionic liquids used as robust DSC electrolytes. These ionic liquids exhibit low viscosity, high conductivity, and thermal stability. The implementation of 1-but-3-enyl-3-methyl-imidazolium trifluoromethanesulfonate, [ButMIm]OTf, into DSCs gave the best photovoltaic performance. The results are fairly comparable to those reports for other popular ionic liquid electrolytes currently used in DSC field. An insightful discussion on the relationship between the structure of these new ionic liquids and the J-V characterization as well as electrochemical impedance measurement of DSCs will give more interesting information. The results are useful for large-scale outdoor application of DSCs.

13.
RSC Adv ; 8(62): 35681-35688, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35547886

RESUMO

A novel magnetic nanomaterial-immobilized Lewis acidic ionic liquid was successfully synthesized by the covalent embedding of 3-(3-(trimethoxysilyl)propyl)-1H-imidazol-3-ium chlorozincate (ii) ionic liquid to the surface of Fe3O4 nanoparticles. The material was then characterized by FT-IR, SEM, TEM, TGA, ICP-OES, Raman, and EDS. Its performance as a new-generation Lewis acidic catalyst was also examined on the ultrasound-mediated synthesis of benzoxanthenes and pyrroles. Upon completion, the catalyst was simply recovered by an external magnet for multiple reuses without significant lessening of catalytic performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...