Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 273(Pt 2): 132700, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879998

RESUMO

Ocular disorders, encompassing both common ailments like dry eye syndrome and more severe situations for instance age-related macular degeneration, present significant challenges to effective treatment due to the intricate architecture and physiological barriers of the eye. Polysaccharides are emerging as potential solutions for drug delivery to the eyes due to their compatibility with living organisms, natural biodegradability, and adhesive properties. In this review, we explore not only the recent advancements in polysaccharide-based technologies and their transformative potential in treating ocular illnesses, offering renewed optimism for both patients and professionals but also anatomy of the eye and the significant obstacles hindering drug transportation, followed by an investigation into various drug administration methods and their ability to overcome ocular-specific challenges. Our focus lies on biological adhesive polymers, including chitosan, hyaluronic acid, cellulose, cyclodextrin, and poloxamer, known for their adhesive characteristics enhancing drug retention on ocular surfaces and increasing bioavailability. A detailed analysis of material designs used in ophthalmic formulations, such as gels, lenses, eye drops, nanofibers, microneedles, microspheres, and nanoparticles, their advantages and limitations, the potential of formulations in improving therapeutic outcomes for various eye conditions. Moreover, we underscore the discovery of novel polysaccharides and their potential uses in ocular drug delivery.

2.
Colloids Surf B Biointerfaces ; 235: 113759, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280240

RESUMO

Polysaccharides, with the abundant availability, biodegradability, and inherent safety, offer a vast array of promising applications. Leveraging the remarkable attributes of polysaccharides, biomimetic and multifunctional hydrogels have emerged as a compelling avenue for efficacious wound dressing. The gels emulate the innate extracellular biomatrix as well as foster cellular proliferation. The distinctive structural compositions and profusion of functional groups within polysaccharides confer excellent physical/chemical traits as well as distinct restorative involvements. Gels crafted from polysaccharide matrixes serve as a robust defense against bacterial threats, effectively shielding wounds from harm. This comprehensive review delves into wound physiology, accentuating the significance of numerous polysaccharide-based gels in the wound healing context. The discourse encompasses an exploration of polysaccharide hydrogels tailored for diverse wound types, along with an examination of various therapeutic agents encapsulated within hydrogels to facilitate wound repair, incorporating recent patent developments. Within the scope of this manuscript, the perspective of these captivating gels for promoting optimal healing of wounds is vividly depicted. Nevertheless, the pursuit of knowledge remains ongoing, as further research is warranted to bioengineer progressive polysaccharide gels imbued with adaptable features. Such endeavors hold the promise of unlocking substantial potential within the realm of wound healing, propelling us toward multifaceted and sophisticated solutions.


Assuntos
Polissacarídeos , Cicatrização , Polissacarídeos/farmacologia , Polissacarídeos/química , Hidrogéis/farmacologia , Hidrogéis/química , Proliferação de Células , Biomimética , Antibacterianos/farmacologia
3.
Int J Surg Case Rep ; 112: 108953, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37856974

RESUMO

INTRODUCTION AND IMPORTANCE: Intussusception in adults is a rare manifestation after traumatic abdominal surgery, because after abdominal surgery patients often have functional bowel paralysis rather than increased intestinal motility. CASE PRESENTATION: 39-year-old male patient with acute intussusception appeared after surgery for diaphragmatic rupture and is undergoing postoperative treatment on day 7. The patient has clinical manifestations of small bowel obstruction. Computed tomography image shows evidence of jejuno-jejunal intussusception. Exploratory laparotomy and resection of the necrotic bowel were performed. CLINICAL DISCUSSION: Rare cases such as intussusception should be observed postoperatively and in similar manifestations with careful examination of the characteristic CT findings, because of early detection and surgical intervention with manual reduction can prevent the need for small bowel resection and possible unwanted complications. CONCLUSION: Postoperative intussusception occurs primarily in the small intestine and should be indicated for emergency surgery in all cases, and this should be kept in mind by the surgeon and the resuscitator. The early diagnosis and intervention of patients increase the survival rate and the surgical efficiency.

4.
J Nanobiotechnology ; 21(1): 260, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553670

RESUMO

Thrombotic vascular disorders, specifically thromboembolisms, have a significant detrimental effect on public health. Despite the numerous thrombolytic and antithrombotic drugs available, their efficacy in penetrating thrombus formations is limited, and they carry a high risk of promoting bleeding. Consequently, the current medication dosage protocols are inadequate for preventing thrombus formation, and higher doses are necessary to achieve sufficient prevention. By integrating phototherapy with antithrombotic therapy, this study addresses difficulties related to thrombus-targeted drug delivery. We developed self-assembling nanoparticles (NPs) through the optimization of a co-assembly engineering process. These NPs, called DIP-FU-PPy NPs, consist of polypyrrole (PPy), dipyridamole (DIP), and P-selectin-targeted fucoidan (FU) and are designed to be delivered directly to thrombi. DIP-FU-PPy NPs are proposed to offer various potentials, encompassing drug-loading capability, targeted accumulation in thrombus sites, near-infrared (NIR) photothermal-enhanced thrombus management with therapeutic efficacy, and prevention of rethrombosis. As predicted, DIP-FU-PPy NPs prevented thrombus recurrence and emitted visible fluorescence signals during thrombus clot penetration with no adverse effects. Our co-delivery nano-platform is a simple and versatile solution for NIR-phototherapeutic multimodal thrombus control.


Assuntos
Nanopartículas , Trombose , Dipiridamol/farmacologia , Nanopartículas/uso terapêutico , Selectina-P , Fototerapia/métodos , Polímeros , Pirróis , Trombose/tratamento farmacológico , Animais
5.
Adv Healthc Mater ; 12(28): e2301504, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37421244

RESUMO

Traditional thrombolytic therapeutics for vascular blockage are affected by their limited penetration into thrombi, associated off-target side effects, and low bioavailability, leading to insufficient thrombolytic efficacy. It is hypothesized that these limitations can be overcome by the precisely controlled and targeted delivery of thrombolytic therapeutics. A theranostic platform is developed that is biocompatible, fluorescent, magnetic, and well-characterized, with multiple targeting modes. This multimodal theranostic system can be remotely visualized and magnetically guided toward thrombi, noninvasively irradiated by near-infrared (NIR) phototherapies, and remotely activated by actuated magnets for additional mechanical therapy. Magnetic guidance can also improve the penetration of nanomedicines into thrombi. In a mouse model of thrombosis, the thrombosis residues are reduced by ≈80% and with no risk of side effects or of secondary embolization. This strategy not only enables the progression of thrombolysis but also accelerates the lysis rate, thereby facilitating its prospective use in time-critical thrombolytic treatment.


Assuntos
Terapia Trombolítica , Trombose , Camundongos , Animais , Medicina de Precisão , Fibrinolíticos/química , Fibrinolíticos/uso terapêutico , Trombose/diagnóstico por imagem , Trombose/tratamento farmacológico , Fenômenos Magnéticos
6.
Water Sci Technol ; 87(9): 2390-2405, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37186638

RESUMO

This study developed an antifouling coating for polyethersulfone (PES) membranes by tuning the bandgap of TiO2 with Cu nanoparticles (NPs) via a polyacrylic acid (PAA)-plasma-grafted intermediate layer. Cu NPs were synthesized at different molar ratios and precipitated onto TiO2 using the sol-gel method. The resulting Cu@TiO2 photocatalysts were characterized using various techniques, showing reduced bandgap, particle size range of 100-200 nm, and generation of reactive free radicals under light irradiation. The 25% Cu@TiO2 photocatalyst displayed the highest catalytic efficiency for Acid Blue 260 (AB260) degradation, achieving 73% and 96% with and without H2O2, respectively. Photocatalytic membranes based on this catalyst achieved an AB260 degradation efficiency of 91% and remained stable over five cycles. Additionally, sodium alginate-fouled photocatalytic membranes fully recovered water permeability after undergoing photocatalytic degradation of foulants. The modified membrane displayed a higher surface roughness due to the presence of photocatalyst particles. This study demonstrates the potential application of Cu@TiO2/PAA/PES photocatalytic membranes for mitigating membrane fouling in practice.


Assuntos
Incrustação Biológica , Nanopartículas , Incrustação Biológica/prevenção & controle , Peróxido de Hidrogênio
7.
Environ Technol ; 44(18): 2753-2769, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35138237

RESUMO

Besides photocatalysts, novel catalytic wet-air oxidation (CWAO) catalysts capable of operating under mild conditions are a potential candidate to fabricate antifouling filtration membranes. This study optimized the CWAO catalyst consisting of three metal oxide components (ZnO, CuO, and Fe3O4) and used it to fabricate composite membranes with PES (polyethersulfone). The catalyst was characterized by methods such as FTIR, BET, XRD, UV-Vis DRS, XPS, ESR. The activity of the catalyst and the composite membranes was tested by the Acid Yellow 42 (AY42) degradation experiments in both cases with and without hydrogen peroxide at room conditions with air aeration. The pure water fluxes of composite membranes were also investigated based on a vacuum filtration system. The major degradation pathways of AY42 by the catalyst were proposed from the DFT (Density Functional Theory) and NBO (Natural Bond Orbital) calculations. The results showed that the optimal catalyst has molar ratios of Zn, Cu, and Fe metal ions of 0.05, 0.588, and 0.362, respectively, with AY42 decomposition efficiency of 88% in 3 h. The main factors affecting the catalytic efficiency of the CWAO catalyst determined from the trapping experiment were e- and O2. The results from different materials characterization methods have demonstrated the successful synthesis of the catalyst with a high surface area (103.5 m2/g) and small pore diameters (∼10 nm). The AY42 degradation of composite membranes was stable over five repeated cycles with over 70% efficiency. The pure water fluxes of composite membranes have also been significantly improved and are proportional to catalyst contents.


Assuntos
Incrustação Biológica , Incrustação Biológica/prevenção & controle , Oxirredução , Água , Zinco , Catálise
8.
Environ Sci Pollut Res Int ; 30(5): 12929-12943, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36121632

RESUMO

Because of the small size effect leading to the high bandgap of TiO2 P25, the photocatalytic membrane using this photocatalyst has low antifouling efficiency. This study prepared CuO@TiO2 composite photocatalyst with a lower bandgap than TiO2 P25 and used it as antifouling coatings on the PES membrane with PAA intermediate adhesive layer. PAA was grafted onto the surface of the PES membranes through free radicals generated by the cold plasma treatment of the PES membrane. The composite photocatalysts were characterized by FTIR, SEM-EDS, TEM-EDS, XRD, BET, UV-Vis DRS, XPS, and ESR methods demonstrating high surface area (51.0 m2/g), decreased bandgap, and the formation of active free radicals under UV light irradiation. Under photocatalysis and hydrogen peroxide activation, the degradation of AB260 (acid blue 260) catalyzed by 10%CuO@TiO2 reached about 92% after 60 min. Besides, the photocatalytic and antifouling activities of CuO@TiO2/PAA/PES membranes are high and stable over five continuous cycles. The water flux of the modified membrane was not significantly influenced and only decreased about 10% compared to the pristine membrane. In addition, the flux recovery ratios (FRR) of fouled membranes treated by photocatalysis were almost 100%.


Assuntos
Incrustação Biológica , Peróxido de Hidrogênio , Incrustação Biológica/prevenção & controle , Raios Ultravioleta
9.
Am J Trop Med Hyg ; 106(3): 891-895, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35081510

RESUMO

Relatively little is known about the seroprevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) IgG antibodies and COVID-19-related behaviors in the general population in Vietnam, where the first case of COVID-19 was detected on January 22, 2020. We surveyed a group of 885 blood donors at community blood donation sessions in Ho Chi Minh City from August 27 to November 7, 2020. Blood was collected to test for SARS-CoV-2 IgG antibodies using the plaque reduction neutralization test. We adjusted the seroprevalence by weight for ages 18 to 59 years old obtained from the 2019 population census. The weighted seroprevalence estimate for SARS-CoV-2 neutralizing IgG antibodies was 0.20% (95% CI, 0.05-0.81). Reports of usually or always using a mask in public places were observed at high levels of 28.6% and 67.5%, respectively. The percentages of usually or always washing hands with soap or disinfecting with hand sanitizer after touching items in public places were 48.0% and 37.6%, respectively. Although our findings suggest undocumented exposure to the virus, the seroprevalence of SARS-CoV-2 IgG antibodies among blood donors was low in this city.


Assuntos
Doadores de Sangue , COVID-19 , Adolescente , Adulto , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/epidemiologia , Humanos , Pessoa de Meia-Idade , SARS-CoV-2 , Estudos Soroepidemiológicos , Vietnã/epidemiologia , Adulto Jovem
10.
Water Sci Technol ; 84(10-11): 3155-3171, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34850719

RESUMO

In this study, the electro-Fenton (EF) method was applied to remove total organic carbon (TOC) from the pesticide production wastewater containing tricyclazole (TC). Statistical Taguchi method was used to optimize the treatment performance. Analysis of variance (ANOVA) indicated that the polynomial regression model fitted experimental data with R2 of 0.969. The optimal conditions for eliminating 75.4% TOC and 93.7% TC were 0.2 mM of Fe2+, 990 mg/L of Na2SO4, 180 min of reaction time at pH 3 with 2.22 mA/cm2 of current density. The removal of TC present in the wastewater followed the first-order reaction kinetic model (R2 = 0.993); while that was the second-order kinetic model in the case of the TOC removal (R2 = 0.903). In addition, the experimental results and theory approaches (density functional theory and natural bond orbital calculations) also showed the C-N bond breaking and nitrate ions cleavage to ammonia. Acute toxicity of the pesticide wastewater after treatment (PWAT) on microcrustaceans showed that the treated wastewater still exhibited high toxicity against D. magna, with LC50 values of 3.84%, 2.68%, 2.05%, and 1.78% at 24 h, 48 h, 72 h, and 96 h, respectively.


Assuntos
Praguicidas , Poluentes Químicos da Água , Purificação da Água , Peróxido de Hidrogênio , Oxirredução , Projetos de Pesquisa , Águas Residuárias , Poluentes Químicos da Água/análise
11.
Mater Sci Eng C Mater Biol Appl ; 128: 112265, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474824

RESUMO

Spurred by recent progress in biomaterials and therapeutics, stimulus-responsive strategies that deliver an active substance in temporal-, spatial-, and dose-controlled fashions have become achievable. Implementation of such strategies necessitates the use of bio-safe materials that are sensitive to a specific pathological incitement or that, in response to a precise stimulus, undergo hydrolytic cleavage or a change in biomolecular conformation. An innovative design of polymeric stimulus-responsive systems should controllably release a drug or degrade the drug carrier in response to specific lesion enzymes. Wound healing is a great challenge due to various hidden factors such as pathogenic infections, neurovascular diseases, excessive exudates, lack of an effective therapeutic delivery system, low cell proliferation, and cell migration. In addition, long-term use of antibiotics in chronic wound management can result in side effects and antimicrobial resistance. Novel treatments with antibacterial pharmaceuticals thus vitally need to be developed. Recently, graphene and graphene family members have emerged as shining stars among biomaterials for wound-healing applications due to their excellent bioactive properties, which can overcome limitations of current wound dressings and fulfill wound-healing requirements. Herein, we developed a feasible approach to impregnate graphene oxide (GO) into genipin-crosslinked gelatin (3GO) hydrogels to enzymatically control GO release. The developed hydrogels were characterized by chemical, physical, morphological, and cellular analyses. The results proved that the 3GO1 hydrogel is biocompatible and significantly enhanced the mechanical strength by encapsulating GO. Moreover, the rate of GO release depended on the crosslinking degree and environmental enzyme levels. Enzymatically released GO displayed uniform dispersity, retained its antibacterial activities against Staphylococcus aureus and Pseudomonas aeruginosa through sharp edges and wrapping mechanisms, and promoted human fibroblast migration. This multifunctional hydrogel we developed with antibacterial efficacy is suitable for future application as wound dressings.


Assuntos
Grafite , Antibacterianos/farmacologia , Bandagens , Humanos , Hidrogéis , Cicatrização
12.
Environ Monit Assess ; 186(2): 845-58, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24114277

RESUMO

In this study, we focused on water quality in an urban canal and the Mekong River in the city of Can Tho, a central municipality of the Mekong Delta region, southern Vietnam. Water temperature, pH, electrical conductivity, BOD5, CODCr, Na(+), Cl(-), NH4 (+)-N, SO4 (2-)-S, NO3 (-)-N, and NO2 (-)-N for both canal and river, and tide level of the urban canal, were monitored once per month from May 2010 to April 2012. The urban canal is subject to severe anthropogenic contamination, owing to poor sewage treatment. In general, water quality in the canal exhibited strong tidal variation, poorer at lower tides and better at higher tides. Some anomalies were observed, with degraded water quality under some high-tide conditions. These were associated with flow from the upstream residential area. Therefore, it was concluded that water quality in the urban canal changed with a balance between dilution effects and extent of contaminant supply, both driven by tidal fluctuations in the Mekong River.


Assuntos
Cidades/estatística & dados numéricos , Monitoramento Ambiental , Rios/química , Poluentes da Água/análise , Abastecimento de Água/estatística & dados numéricos , Humanos , Vietnã
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...