Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37961624

RESUMO

GLABRA2 (GL2), a class IV homeodomain leucine-zipper (HD-Zip IV) transcription factor (TF) from Arabidopsis , is a developmental regulator of specialized cell types in the epidermis. GL2 contains a putative monopartite nuclear localization sequence (NLS) partially overlapping with its homeodomain (HD). We demonstrate that NLS deletion or alanine substitution of its basic residues (KRKRKK) affects nuclear localization and results in a loss-of-function phenotype. Fusion of the predicted NLS (GTNKRKRKKYHRH) to the fluorescent protein EYFP is sufficient for its nuclear localization in roots and trichomes. The functional NLS is evolutionarily conserved in a distinct subset of HD-Zip IV members including PROTODERMAL FACTOR2 (PDF2). Despite partial overlap of the NLS with the HD, genetic dissection of the NLS from PDF2 indicates that nuclear localization and DNA binding are separable functions. Affinity purification of GL2 from plant tissues followed by mass spectrometry-based proteomics identified Importin α (IMPα) isoforms as potential GL2 interactors. NLS structural prediction and molecular docking studies with IMPα-3 revealed major interacting residues. Split-ubiquitin cytosolic yeast two-hybrid assays suggest interaction between GL2 and four IMPα isoforms from Arabidopsis. Direct interactions were verified in vitro by co-immunoprecipitation with recombinant proteins. IMPα triple mutants ( impα- 1,2,3 ) exhibit defects in EYFP:GL2 nuclear localization in trichomes but not in roots, consistent with tissue-specific and redundant functions of IMPα isoforms in Arabidopsis . Taken together, our findings provide mechanistic evidence for IMPα-dependent nuclear localization of GL2 and other HD-Zip IV TFs in plants. One sentence summary: GLABRA2, a representative HD-Zip IV transcription factor from Arabidopsis , contains an evolutionarily conserved monopartite nuclear localization sequence that is recognized by Importin α for translocation to the nucleus, a process that is necessary for cell-type differentiation of the epidermis.

2.
Curr Opin Plant Biol ; 75: 102417, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37441837

RESUMO

The leaf epidermis comprises the outermost layer of cells that protect plants against environmental stresses such as drought, ultraviolet radiation, and pathogen attack. Research over the past decades highlights the role of class IV homeodomain leucine-zipper (HD-Zip IV) transcription factors (TFs) in driving differentiation of various epidermal cell types, such as trichomes, guard cells, and pavement cells. Evolutionary origins of this family in the charophycean green algae and HD-Zip-specific gene expression in the maternal genome provide clues to unlocking their secrets which include ties to cell cycle regulation. A distinguishing feature of these TFs is the presence of a lipid binding pocket that integrates metabolic information with gene expression. Identities of metabolic partners are beginning to emerge, uncovering feedback loops to maintain epidermal cell specification. Discoveries of associated molecular mechanisms are revealing fascinating links to phospholipid and sphingolipid metabolism and mechanical signaling.


Assuntos
Proteínas de Homeodomínio , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Raios Ultravioleta , Diferenciação Celular , Células Epidérmicas/metabolismo , Epiderme/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...