Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurophysiol ; 117(2): 655-664, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27852730

RESUMO

While the effects of sensory feedback on bimanual tasks have been studied extensively at two ends of the motor control hierarchy, the cortical and behavioral levels, much less is known about how it affects the intermediate levels, including neural control of homologous muscle groups. We investigated the effects of somatosensory input on the neural coupling between homologous arm muscles during bimanual tasks. Twelve subjects performed symmetric elbow flexion/extension tasks under different types of sensory feedback. The first two types involve visual feedback, with one imposing stricter force symmetry than the other. The third incorporated somatosensory feedback via a balancing apparatus that forced the two limbs to produce equal force levels. Although the force error did not differ between feedback conditions, the somatosensory feedback significantly increased temporal coupling of bilateral force production, indicated by a high correlation between left/right force profiles (P < 0.001). More importantly, intermuscular coherence between biceps brachii muscles was significantly higher with somatosensory feedback than others (P = 0.001). Coherence values also significantly differed between tasks (flexion/extension). Notably, whereas feedback type mainly modulated coherence in the α- and γ-bands, task type only affected ß-band coherence. Similar feedback effects were observed for triceps brachii muscles, but there was also a strong phase effect on the coherence values (P < 0.001) that could have diluted feedback effects. These results suggest that somatosensory feedback can significantly increase neural coupling between homologous muscles. Additionally, the between-task difference in ß-band coherence may reflect different neural control strategies for the elbow flexor and extensor muscles. NEW & NOTEWORTHY: This study investigated the effects of somatosensory feedback during bimanual tasks on the neural coupling between arm muscles, which remains largely unexplored. Somatosensory feedback using a balancing apparatus, compared with visual feedback, significantly increased neural coupling between homologous muscles (indicated by intermuscular coherence values) and improved temporal correlation of bilateral force production. Notably, feedback type modulated coherence in the α- and γ-bands (more subcortical pathways), whereas task type mainly affected ß-band coherence (corticospinal pathway).


Assuntos
Retroalimentação Sensorial/fisiologia , Contração Isométrica/fisiologia , Músculo Esquelético/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Análise de Variância , Cotovelo/fisiologia , Eletromiografia , Feminino , Lateralidade Funcional/fisiologia , Humanos , Masculino , Reflexo/fisiologia , Adulto Jovem
2.
J Neurosci Methods ; 214(1): 15-20, 2013 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-23313756

RESUMO

The InMotion2 and other similarly designed robots, are commonly used for rehabilitation of neurological injuries and motor adaptation studies. These robots are used to simulate haptic environments; however, anisotropy in end-point impedance due to the intrinsic robot dynamics can compromise these experiments. The goal was to decrease the magnitude and anisotropy of the robot impedance using a dynamic compensation algorithm that reduces the forces normally felt by the user during rapid movements. We tested this algorithm with two different methods for real-time calculation of derivatives, a novel quadratic fit method (CQF) and the commonly used backward derivative method (CBD). Six subjects performed a series of point-to-point movements under three conditions (no compensation, CQF, CBD), in different directions at peak speeds of 50, 100 and 150 cm/s. Without compensation, tangential peak-to-peak forces were as large as 69 N in certain directions at the 150 cm/s speed. Both CQF and CBD significantly reduced tangential forces in all directions and speeds. CQF outperformed CBD in the directions with highest intrinsic impedance, reducing tangential forces by 64% in these directions. Compensation also significantly reduced forces normal to the movement direction, with CQF again outperforming CBD in several cases. Anisotropy was assessed by the range of tangential peak-to-peak forces across movement directions. In the no compensation condition, anisotropy was as high as 52.7 N at the 150 cm/s speed, but an average anisotropy reduction of 74% was achieved with CQF. The CQF method can significantly reduce impedance and anisotropy in this class of robot.


Assuntos
Robótica , Adulto , Algoritmos , Anisotropia , Braço/inervação , Braço/fisiologia , Fenômenos Biomecânicos , Impedância Elétrica , Feminino , Humanos , Masculino , Transtornos dos Movimentos/reabilitação , Desempenho Psicomotor , Robótica/instrumentação , Torque , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...