Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 23(12): 7671-7687, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34398481

RESUMO

Studies on bacterial plant diseases have thus far been focused on the single bacterial species causing the disease, with very little attention given to the many other microorganisms present in the microbiome. This study intends to use pathobiome analysis of the rice foot rot disease, caused by Dickeya zeae, as a case study to investigate the effects of this bacterial pathogen to the total resident microbiome and to highlight possible interactions between the pathogen and the members of the community involved in the disease process. The microbiome of asymptomatic and the pathobiome of foot-rot symptomatic field-grown rice plants over two growing periods and belonging to two rice cultivars were determined via 16S rRNA gene amplicon sequencing. Results showed that the presence of D. zeae is associated with an alteration of the resident bacterial community in terms of species composition, abundance and richness, leading to the formation of microbial consortia linked to the disease state. Several bacterial species were significantly co-presented with the pathogen in the two growing periods suggesting that they could be involved in the disease process. Besides, culture-dependent isolation and in planta inoculation studies of a bacterial member of the pathobiome, identified as positive correlated with the pathogen in our in silico analysis, indicated that it benefits from the presence of D. zeae. A similar microbiome/pathobiome experiment was also performed in a symptomatically different rice disease evidencing that not all plant diseases have the same consequence/relationship with the plant microbiome. This study moves away from a pathogen-focused stance and goes towards a more ecological perception considering the effect of the entire microbial community which could be involved in the pathogenesis, persistence, transmission and evolution of plant pathogens.


Assuntos
Microbiota , Oryza , Dickeya , Enterobacteriaceae/genética , Microbiota/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia , RNA Ribossômico 16S/genética
2.
Dalton Trans ; 43(29): 11305-8, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24946839

RESUMO

Employing newly synthesized di-substituted tri-phenyl amine (HMP-9) and carbazole (HMP-11) dyes (with limited acidic carboxyl anchor groups), a power conversion efficiency as high as 7.03% in ZnO nanocrystallite (NC)-based dye-sensitized solar cells (DSSCs) is achieved. The specific molecular designs of HMP-09 and HMP-11 consisting of with and without hexyloxy spacer groups, and added tri-phenyl amine or 9-phenyl-9H-carbazole donor groups, respectively, attached on the ancillary ligands are advantageous, evidenced from electrochemical impedance spectroscopy measurements, for ZnO NC-based DSSCs.

3.
J Nanosci Nanotechnol ; 10(10): 6811-4, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21137802

RESUMO

Heteroleptic ruthenium complexes cis-[Ru(H2dcbpy)(L)(NCS)2], where H2dcbpy is 4,4'-dicarboxylic acid-2,2'-bipyridine and L is 4-(4-(N,N-di-(p-hexyloxyphenyl)-amino)styryl)-4'-methyl-2,2'-bipyridine (Rut-A) or 4-(4'-(3,6-dihexyloxycarbazole-9-yl)-styryl)-4'-methyl-2,2'-bipyridine (Rut-B), have been synthesized and characterized by NMR, UV-Vis spectroscopy, and cyclic voltammogram. The effect of different electron donors on the properties of dye-sensitized solar cells has been studied. The power conversion efficiency of DSSC based on Rut-B is 6.1% while Rut-A delivered a lower efficiency of 4.52% under the same device fabrication and measuring conditions. The better photovoltaic performance of Rut-B is mainly associated with enhanced dye absorptivity and charge recombination suppression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...