Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(27): 18629-18648, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38920053

RESUMO

Manganese oxides (MnxOy) have been widely applied in various chemical industrial processes owing to their long lifetime, low cost and high abundance. They have been used as co-reactants for the elimination of volatile organic compounds (VOCs); however, their oxidation mechanism is not clearly established. In this theoretical study, interaction capacities between benzene (C6H6) and MnxOy clusters, which were modeled with MnO2 and Mn2O3 molecules, were investigated by quantum chemical computations using density functional theory (DFT) with the PBE-D3 functional. The interaction capacity between C6H6 and MnxOy was evaluated, and the probing of the initial stage of the C6H6 oxidation at a molecular level offers an in-depth oxidation reaction path. Interaction energies computed in several spin states, along with the analysis of the electron distribution using the quantum theory of atoms in molecules, natural bond orbital and Wiberg bond index techniques as well as local softness values and MO energies of fragments, point out that the interaction between C6H6 and Mn2O3 is stronger than that with MnO2, amounting to -43 and -35 kcal mol-1, respectively, and the metal atom is identified as the primary active site. During the oxide cluster-assisted oxidation, benzene firstly undergoes an oxidation reaction by active oxygen to generate intermediates such as hydroquinone and benzoquinone. The pathway involving p-benzoquinone as the product (noted as PR1) is the most energetically favored one through a transition structure lying at 19 kcal mol-1, below the energy reference of the reactants, leading to an energy barrier significantly lower than that of 36 kcal mol-1 found for the gas phase oxidation reaction with molecular oxygen without the assistance of the oxide clusters. Potential energy profiles illustrating the reaction paths and molecular mechanisms were described in detail.

2.
ACS Omega ; 8(13): 11725-11735, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37033805

RESUMO

In this work, noncovalent interactions including hydrogen bonds, C···C, N···O, and van der Waals forces between paracetamol and formaldehyde were investigated using the second-order perturbation theory MP2 in conjunction with the correlation consistent basis sets (aug-cc-pVDZ and aug-cc-pVTZ). Two molecular conformations of paracetamol were considered. Seven equilibrium geometries of dimers were found from the result of the interactions with formaldehyde for each conformation of paracetamol. Interaction energies of complexes with both ZPE and BSSE corrections range from -7.0 to -21.7 kJ mol-1. Topological parameters (such as electron density, its Laplacian, and local electron energy density at the bond critical points) of the bonds from atoms in molecules theory were analyzed in detail. The natural bond orbital analysis showed that the stability of complexes was controlled by noncovalent interactions including O-H···O, N-H···O, C-H···O, C-H···N, C-H···H-C, C···C, and N···O. The red- and blue-shifted hydrogen bonds could both be observed in these complexes. The properties of these interactions were also further examined in water using a polarized continuum model. In water, the stability of the complex was slightly reduced as compared to that in the gas phase.

3.
ACS Omega ; 7(40): 36048, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36249374

RESUMO

[This corrects the article DOI: 10.1021/acsomega.2c04316.].

4.
ACS Omega ; 7(42): 37221-37228, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36312358

RESUMO

Arrangements of hydroxyl groups on graphene sheets were systematically investigated using density functional theory calculations that included van der Waals interactions. Results show that hydroxyl groups tend to gather at para-positions on graphene sheets to generate perfect ring-like hexahydroxyl group adsorption. The close proximity of hydroxyl groups is in good agreement with the experimental separation between unoxidized, aromatic and oxidized, saturated regions in graphene oxide. The orientation of hydrogen atoms in hydroxyl groups creates both O-H···O and O-H···π hydrogen bonds. Calculations also indicated that the binding energy per hydroxyl group follows a logarithmic function with respect to the number of hydroxyl groups. Besides, the opening band gap was observed for several derivatives, and the relationship between the band gap and O/C ratio was found to be nonmonotonic. Analysis of the density of states showed that bands around the Fermi levels of derivatives between graphene and hydroxyl groups are mainly composed of 2p z orbitals of carbon and oxygen atoms.

5.
ACS Omega ; 7(37): 33470-33481, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36157753

RESUMO

Ab initio CCSD(T)/CBS(T,Q,5)//B3LYP/6-311++G(3df,2p) calculations have been conducted to map the C3H3O2 potential energy surface. The temperature- and pressure-dependent reaction rate constants have been calculated using the Rice-Ramsperger-Kassel-Marcus Master Equation model. The calculated results indicate that the prevailing reaction channels lead to CH3CO + CO and CH2CO + HCO products. The branching ratios of CH3CO + CO and CH2CO + HCO increase both from 18 to 29% with reducing temperatures in the range of 300-2000 K, whereas CCCHO + H2O (0-10%) and CHCCO + H2O (0-17%) are significant minor products. The desirable products OH and H2O have been found for the first time. The individual rate constant of the C3H3 + O2 → CH2CO + HCO channel, 4.8 × 10-14 exp[(-2.92 kcal·mol-1)/(RT)], is pressure independent; however, the total rate constant, 2.05 × 10-14 T0.33 exp[(-2.8 ± 0.03 kcal·mol-1)/(RT)], of the C3H3 + O2 reaction leading to the bimolecular products strongly depends on pressure. At P = 0.7-5.56 Torr, the calculated rate constants of the reaction agree closely with the laboratory values measured by Slagle and Gutman [Symp. (Int.) Combust.1988, 21, 875-883] with the uncertainty being less than 7.8%. At T < 500 K, the C3H3 + O2 reaction proceeds by simple addition, making an equilibrium of C3H3 + O2 ⇌ C3H3O2. The calculated equilibrium constants, 2.60 × 10-16-8.52 × 10-16 cm3·molecule-1, were found to be in good agreement with the experimental data, being 2.48 × 10-16-8.36 × 10-16 cm3·molecule-1. The title reaction is concluded to play a substantial role in the oxidation of the five-member radicals and the present results corroborate the assertion that molecular oxygen is an efficient oxidizer of the propargyl radical.

6.
J Mol Graph Model ; 111: 108096, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34875503

RESUMO

Reaction mechanisms of the dehydrogenation of formaldehyde, formic acid and methanol on the Pt4 cluster were computationally investigated using density functional theory (DFT) with the B3LYP functional in the conjunction with the aug-cc-pVTZ basis sets for H, C and O atoms, and the cc-pVDZ-PP basis set for Pt. Herein, the key mechanistic aspects of three possible pathways of the dehydrogenation of these compounds are summarized. The results indicate that the formation of H2 and CO or CO2 molecules is more energetically favorable than the generation of H and H2O, HCHO products. Generally, the formation of H2 molecule in the presence of catalysts is more favorable than the direct decomposition of either HCHO, HCOOH or CH3OH molecule. The use of Pt4 catalyst significantly reduces the energy barriers for C-H and O-H bond cleavage of all three compounds to 14, 9 and 12 kcal/mol, respectively. The decomposition of HCOOH is found to be the most energetically favorable. In addition, the mechanistic insights of the reactions confirm the reduction of the energy barriers of the gas-phase dehydrogenation by 67-82 kcal/mol and bring it to the values smaller than 14 kcal/mol in the presence of the Pt4 catalysts.


Assuntos
Formiatos , Metanol , Catálise , Formaldeído
7.
Int J Cosmet Sci ; 43(6): 715-728, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34714546

RESUMO

Fatty alcohol-polysorbate 60-water ternary systems were used as models to represent the continuous phases of the respective semisolid oil-in-water emulsions for topical delivery of cosmetic and medicinal agents. The influence of batch variation of polysorbate 60 and fatty alcohol on structure and consistency of these systems was investigated using microscopy, rheology, differential scanning calorimetry and X-ray scattering techniques. The polysorbate 60 : cetostearyl alcohol mixed emulsifying wax showed swelling in water, that is, the lamellar repeat distance continually augmented from 93 to 125 Å with water percentage 20-90%. Cetostearyl alcohol ternary systems were thicker than cetyl alcohol ones independently of polysorbate 60 batches used. All the ternary systems showed an initial increase in consistency over the first 2 weeks of storage, which was followed by slight changes in consistency (cetostearyl alcohol systems) due to the re-allocation of polysorbate 60 molecules in the gel network or significant breakdown of structure (cetyl alcohol systems) due to the transformation of swollen α-lamellar gel phase into ß, γ crystals on 25°C storage. With all fatty alcohols, the consistency of polysorbate 60 ternary system was directly dependent upon interlamellar water thickness as governed by the length and distribution of polyoxyethylene groups within polysorbate 60 molecules. In relation with the composition of polysorbate 60 batches used, the consistency of ternary systems was higher when prepared with the polysorbate 60 batch containing a greater amount of sorbitan polyoxyethylene monoesters. It was proposed that the swollen α-crystalline gel phase could be better formed by sorbitan polyoxyethylene monoesters rather than sorbitan polyoxyethylene diesters.


Des systemes ternaires alcool gras-polysorbate 60-eau ont été utilisés comme modèles pour représenter les phases continues des émulsions huile-dans-eau semi-solides respectives pour l'administration topique d'agents cosmétiques et médicinaux. L'influence de la variation des lots de polysorbate 60 et d'alcool gras sur la structure et la consistance de ces systèmes a été étudiée en utilisant la microscopie, la rhéologie et la calorimétrie différentielle à balayage et la diffusion des rayons X. La cire émulsifiante mixte polysorbate 60 : alcool cétostearylique a montré un gonflement dans l'eau, c'est-à-dire que la distance de répétition du motif lamellaire a continuellement augmentée de 93 à 125 A° avec un pourcentage d'eau de 20-90%. Les systèmes ternaires d'alcool cétostearylique étaient plus épais que ceux d'alcool cétylique indépendamment des lots de polysorbate 60 utilisés. Tous les systèmes ternaires ont montré une augmentation initiale de la consistance au cours des 2 premières semaines de stockage, qui a été suivie par de légers changements de consistance (systèmes d'alcool cétostearylique) en raison de la re-affectation des molécules de polysorbate 60 dans le réseau de gel ou d'une rupture significative de structure (systèmes d'alcool cétylique) en raison de la transformation des phases lamellaires gonfles de type α-gel en cristaux ß, γ conservés a 25°C. Avec tous les alcools gras, la consistance du système ternaire polysorbate 60 dépendait directement de l'épaisseur inter lamellaire de l'eau car gouverné par la longueur et la distribution des groupes de polyoxyethylène au sein des molécules de polysorbate 60. En relation avec la composition des lots de polysorbate 60 utilisés, la consistance des systèmes ternaires était plus élevée lorsque préparé avec le lot de polysorbate 60 contenant une plus grande quantité de monoesters de polyoxyethylene sorbitane. Il a été proposé que la phase de gel α-cristallin gonflé pourrait être mieux formée par des monoesters de polyoxyethylene sorbitane plutôt que des diesters de polyoxyethylene sorbitane.


Assuntos
Cosméticos/química , Excipientes/química , Álcoois Graxos/química , Polissorbatos/química , Tensoativos/química , Varredura Diferencial de Calorimetria , Reologia , Água/química
8.
ACS Omega ; 6(32): 20975-20983, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34423205

RESUMO

The complexes of cetyl alcohol, cetomacrogol-1000, and water were successfully synthesized. The complexes were characterized by freeze-drying scanning electron microscopy, small-angle X-ray diffraction (SAXD), and ultra-SAXD. Furthermore, structures, electronic properties (the HOMO-LUMO gap, ionization potential, electron affinity, electronegativity, hardness, softness, dipole moment, and polarizability), and Raman spectra of cetyl alcohol, cetomacrogol-1000, and their binary and ternary complexes with water were also studied using density functional theory. The calculated lengths of hydrophilic heads in the ternary complexes were in good agreement with SAXD data. The results indicated the existence of two types of interlamellar spacings between successive swollen bilayers (approximately 144 and 72 Å) when polyoxyethylene groups of cetomacrogol-1000 molecules were completely hydrated and stretched. Besides, in comparison with the monomers, the ternary complex of cetyl alcohol, cetomacrogol-1000, and water with the molecular ratio of 1:1:1 (cetyl-ceto-H2O-1 complex) had outstanding properties.

9.
Molecules ; 25(3)2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-32012731

RESUMO

Benzosiloles and their π-extended derivatives are present in many important advanced materials due to their excellent physical properties. Especially, they have found many potential applications in the development of novel electronic materials such as OLEDs, semiconductors and solar cells. In this review, we have summarized several main approaches to construct (di)benzosilole derivatives and (benzo)siloles fused to aromatic five- and six-membered heterocycles.


Assuntos
Técnicas de Química Sintética , Indóis/síntese química , Indóis/química , Metais/química , Estrutura Molecular
10.
J Mol Graph Model ; 95: 107500, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31784326

RESUMO

Computer simulations using atomistic model are carried out to investigate the stability of ternary systems of pure or mixed fatty alcohols, cetrimide, and water. These semi-solid oil-in-water systems are used as the main component of pharmaceutical creams. Experiments show that the mixed alcohol systems are more stable than pure ones. The current experimental hypothesis is that this is the result of the length mismatch of the alkyl chains. This leads to higher configurational entropy of the chain tip of the longer alcohol molecules. Our simulation results support this hypothesis. The magnitude in fluctuations in the area per molecule also increases in mixed systems, indicating a higher configurational entropy. Analysis of the molecular structure of simulated systems also shows good agreements with experimental data. Additionally, the results also show that the shorter alcohol molecules become stiffer with higher values of the deuterium order parameters and smaller area per molecule. This leads to more configurational space for the longer alcohol to maximize overall the free energy of the system. This is not known so far in available experimental studies of these systems.


Assuntos
Simulação por Computador , Álcoois Graxos , Água , Cetrimônio , Entropia
11.
Phys Chem Chem Phys ; 18(27): 18128-36, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27328036

RESUMO

The optical spectra in the UV-VIS region of the hydrated doubly charged tetramer Ag4(2+) and hydrated multiply charged hexamer Ag6(p+) silver clusters encapsulated inside the sodalite cavity of an LTA-type zeolite have been systematically predicted using DFT, TD-DFT and CASSCF/CASPT2 methods. The optical behaviour of the model hydrated clusters [Ag6(H2O)8(Si24H24O36)](p+) is very sensitive to their charge. Among the cations [Ag6(H2O)8(Si24H24O36)](p+), only the embedded hydrated quadruply charged silver hexamer [Ag6(H2O)8(Si24H24O36)](4+) shows a strong absorption band at ∼420 nm (blue light) and emits light in red color. The absorption spectrum of the hydrated doubly charged silver tetramer cluster [Ag4(H2O)m(Si24H24O36)](2+), which shifts slightly and steadily with the increasing amount of interacting water molecules to longer wavelengths, has a strong peak in the blue region. The water environment forces the silver tetramer to relocate into one side of the cavity instead of at its center as in the case of the non-hydrated [Ag4(Si24H24O36)](2+) cluster. Water molecules act as ligands significantly splitting the energy levels of excited states of the Ag4(2+) and Ag6(4+) clusters. This causes the absorption spectra of the clusters to broaden and the emission to shift to the green-yellow and red part of the visible region.

12.
Artigo em Inglês | MEDLINE | ID: mdl-25546493

RESUMO

The application of chemometrics-assisted UV spectrophotometry and RP-HPLC to the simultaneous determination of chloramphenicol, dexamethasone and naphazoline in ternary and quaternary mixtures is presented. The spectrophotometric procedure is based on the first-order derivative and wavelet transforms of ratio spectra using single, double and successive divisors. The ratio spectra were differentiated and smoothed using Savitzky-Golay filter; whereas wavelet transform realized with wavelet functions (i.e. db6, gaus5 and coif3) to obtain highest spectral recoveries. For the RP-HPLC procedure, the separation was achieved on a ZORBAX SB-C18 (150×4.6 mm; 5 µm) column at ambient temperature and the total run time was less than 7 min. A mixture of acetonitrile - 25 mM phosphate buffer pH 3 (27:73, v/v) was used as the mobile phase at a flow rate of 1.0 mL/min and the effluent monitored by measuring absorbance at 220 nm. Calibration graphs were established in the range 20-70 mg/L for chloramphenicol, 6-14 mg/L for dexamethasone and 3-8 mg/L for naphazoline (R(2)>0.990). The RP-HPLC and ratio spectra transformed by a combination of derivative-wavelet algorithms proved to be able to successfully determine all analytes in commercial eye drop formulations without sample matrix interference (mean percent recoveries, 97.4-104.3%).


Assuntos
Cloranfenicol/análise , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Dexametasona/análise , Nafazolina/análise , Raios Ultravioleta , Análise de Ondaletas , Calibragem , Cloranfenicol/química , Dexametasona/química , Nafazolina/química , Soluções Oftálmicas , Reprodutibilidade dos Testes , Espectrofotometria Ultravioleta
13.
J Phys Chem A ; 118(38): 8861-71, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25180830

RESUMO

A theoretical study of the mechanism and kinetics of the CH(X(2)Π) + H2C═O reaction was carried out by ab initio molecular orbital theory based on the CCSD(T)/aug-cc-pVTZ//BHandHLYP/aug-cc-pVDZ method in conjunction with statistical theoretical kinetic VTST and RRKM Master Equation calculations. The potential energy surface for the cis/trans-HCOH + CH reactions was also examined. Calculated results show that the association reaction of CH and CH2O occurs by addition of the CH radical onto the oxygen atom, cycloaddition onto the C═O bond, and, for a small fraction, insertion of CH into a C-H bond, forming CH2C-O-CH, cyclic H2COCH, and CH2CHO, respectively. These channels are all barrierless, leading to a rate coefficient near the collision limit with a slight negative temperature dependence, in excellent agreement with experimental data. The intermediates can undergo extensive isomerization across seven C2H3O isomers, many with multiple conformers, prior to fragmentation. Eight fragmentation product sets were characterized, where H2CCO + H and CH3 + CO were found to be the major products at lower temperatures, while (3)CH2 + HCO started to contribute at higher temperatures. CCHO + H2, C2H + H2O, HCCOH + H, C2H2 + OH, and HCCO + H2 have negligible contributions for temperatures below 3000 K and pressures up to 100 atm. Collisional stabilization of the C2H3O isomers is negligible except at the highest of pressures and low temperatures.

14.
ScientificWorldJournal ; 2014: 313609, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24949492

RESUMO

The application of first-order derivative and wavelet transforms to UV spectra and ratio spectra was proposed for the simultaneous determination of ibuprofen and paracetamol in their combined tablets. A new hybrid approach on the combined use of first-order derivative and wavelet transforms to spectra was also discussed. In this application, DWT (sym6 and haar), CWT (mexh), and FWT were optimized to give the highest spectral recoveries. Calibration graphs in the linear concentration ranges of ibuprofen (12-32 mg/L) and paracetamol (20-40 mg/L) were obtained by measuring the amplitudes of the transformed signals. Our proposed spectrophotometric methods were statistically compared to HPLC in terms of precision and accuracy.


Assuntos
Acetaminofen/análise , Ibuprofeno/análise , Espectrofotometria Ultravioleta/métodos , Comprimidos/química , Análise de Ondaletas
15.
Artigo em Inglês | MEDLINE | ID: mdl-24374557

RESUMO

Signal processing methods based on the use of derivative, Fourier and wavelet transforms were proposed for the spectrophotometric simultaneous determination of cefoperazone and sulbactam in powders for injection. These transforms were successfully applied to UV spectra and ratio spectra to find suitable working wavelengths. Wavelet signal processing was proved to have distinct advantages (i.e. higher peak intensity obtained, additional smooth function and scaling factor process eliminated) over derivative and Fourier transforms. Especially, a better resolution of spectral overlapping bands was obtained by the use of double signal transform in the sequences such as (i) spectra pre-processed by Fractional Wavelet Transform and subsequently subjected to Continuous Wavelet Transform or Discrete Wavelet Transform, and (ii) derivative - wavelet transforms combined. Calibration graphs for cefoperazone and sulbactam were recorded for the range 10-35 mg/L. Good accuracy and precision were reported for all proposed methods by analyzing synthetic mixtures of cefoperazone and sulbactam. Furthermore, these methods were statistically comparable to RP-HPLC.


Assuntos
Cefoperazona/análise , Análise de Fourier , Espectrofotometria Ultravioleta/métodos , Sulbactam/análise , Análise de Ondaletas , Análise de Variância , Calibragem , Cefoperazona/química , Química Farmacêutica , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Reprodutibilidade dos Testes , Sulbactam/química
16.
Phys Chem Chem Phys ; 15(37): 15404-15, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23936902

RESUMO

Optical properties of silver Ag(n) nanoclusters are demonstrated to be dependent on their size, structure and charge state. It is found that when being contained in the sodalite cavity of LTA zeolite the tetradecanuclear hexacation silver cluster Ag14(6+) is stable. Its lower-lying states and optical spectrum are theoretically determined using the quantum chemical TD-DFT method. Its ground state possesses an outer-shell electron configuration of A1g(2)T2g(6) mimicking the s(2)p(6) valence of noble gas atoms. These frontier orbitals are constructed from 5s,5p(Ag)-AOs with contributions from framework oxygen atoms. Light absorption of Ag14(6+) embedded in the sodalite cage which is characterized by strong peaks centered at 331 and 476 nm (transitions 5s,p(Ag) → 5s,p(Ag)) leads to much longer wavelength emission. The sodalite cage, as a container, stabilizes the central Ag14(6+) cluster by electrostatic attraction. The absorption spectrum of the isovalent neutral Ag8 cluster embedded inside the same sodalite cavity is also simulated using TD-DFT and CASPT2 methods. This absorption spectrum which is similar to that of the Ag14(6+) cluster has two absorption bands in the near UV and visible regions.

17.
J Chem Phys ; 122(15): 154308, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15945636

RESUMO

Quantum chemical calculations have been carried out to determine the electronic ground state of the parent 1,3,5-triaminobenzene trication triradical (TAB3+,C6H9N3 3+) containing a six-membered benzene ring coupled with three exocyclic amino NH(*+)2 groups, each containing an unpaired electron, as the simplest model for high-spin polyarylamine polycations. Related triradicals, including the 1,3,5-trimethylenebenzene (TMB, C9H9) and its nitrogen derivatives such as the monocation C8H9N+, the dication C7H9N2 2+, and the neutral C8H8N, C7H7N2, and C6H6N3 systems containing NH groups, have also been considered. Results obtained using the CASSCF [multiconfigurational complete active space (SCF--self-consistent field)] method, with active spaces ranging from (9e/9o) to (15e/12o), followed by second-order perturbation theory [CASPT2 and MS-CASPT2 (MS--multistate)] with polarized 6-311G(d,p) and natural orbital (ANO-L) basis sets reveal the following: (i) both TAB3+ and TMB (D3h) have a quartet 4A"1 ground state with doublet-quartet 2B1-4A"1 energy gaps of 8.0+/-2.0 and 12.4+/-2.0 kcal/mol, respectively; (ii) in the neutral N series, the quartet state remains the electronic ground state, irrespective of the number of N atoms, but each with slightly reduced gap, 11 kcal/mol for C8H8N (4A"), 10 kcal/mol for C7H7N2 (4A2), and 9 kcal/mol for C6H6N3 (4A2); and (iii) the ground state of monoamino cation and diamino dication is a low-spin doublet state (2B1 for C8H9N+ and 2A2 for C7H9N2 2+) and lying well below the corresponding quartet state by 10 and 12 kcal/mol, respectively. In the monocationic and dicationic amino systems, a slight preference is found for the low-spin state, apparently violating Hund's rule. This effect is due to the splitting of the orbital energies and the presence of the positive charge whose delocalization strongly modifies the electronic distribution and some structural features. In the latter cations, the positive charge basically pushes unpaired electrons onto the ring forming a kind of distonic radical cations and thus gives a preference for a low-spin state.

18.
J Chem Phys ; 122(11): 114307, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15836215

RESUMO

The rate coefficient of the gas-phase reaction C(2)H + H(2)O-->products has been experimentally determined over the temperature range 500-825 K using a pulsed laser photolysis-chemiluminescence (PLP-CL) technique. Ethynyl radicals (C(2)H) were generated by pulsed 193 nm photolysis of C(2)H(2) in the presence of H(2)O vapor and buffer gas N(2) at 15 Torr. The relative concentration of C(2)H radicals was monitored as a function of time using a CH* chemiluminescence method. The rate constant determinations for C(2)H + H(2)O were k(1)(550 K) = (2.3 +/- 1.3) x 10(-13) cm(3) s(-1), k(1)(770 K) =(7.2 +/- 1.4) x 10(-13) cm(3) s(-1), and k(1)(825 K) = (7.7 +/- 1.5) x 10(-13) cm(3) s(-1). The error in the only other measurement of this rate constant is also discussed. We have also characterized the reaction theoretically using quantum chemical computations. The relevant portion of the potential energy surface of C(2)H(3)O in its doublet electronic ground state has been investigated using density functional theory B3LYP6-311 + + G(3df,2p) and molecular orbital computations at the unrestricted coupled-cluster level of theory that incorporates all single and double excitations plus perturbative corrections for the triple excitations, along with the 6-311 + + G(3df,2p) basis set [(U)CCSD(T)6-311 + + G(3df,2p)] and using UCCSD(T)6-31G(d,p) optimized geometries. Five isomers, six dissociation products, and sixteen transition structures were characterized. The results confirm that the hydrogen abstraction producing C(2)H(2)+OH is the most facile reaction channel. For this channel, refined computations using (U)CCSD(T)6-311 + + G(3df,2p)(U)CCSD(T)6-311 + + G(d,p) and complete-active-space second-order perturbation theory/complete-active-space self-consistent-field theory (CASPT2/CASSCF) [B. O. Roos, Adv. Chem. Phys. 69, 399 (1987)] using the contracted atomic natural orbitals basis set (ANO-L) [J. Almlof and P. R. Taylor, J. Chem. Phys.86, 4070 (1987)] were performed, yielding zero-point energy-corrected potential energy barriers of 17 kJ mol(-1) and 15 kJ mol(-1), respectively. Transition-state theory rate constant calculations, based on the UCCSD(T) and CASPT2/CASSCF computations that also include H-atom tunneling and a hindered internal rotation, are in perfect agreement with the experimental values. Considering both our experimental and theoretical determinations, the rate constant can best be expressed, in modified Arrhenius form as k(1)(T) = (2.2 +/- 0.1) x 10(-21)T(3.05) exp[-(376 +/- 100)T] cm(3) s(-1) for the range 300-2000 K. Thus, at temperatures above 1500 K, reaction of C(2)H with H(2)O is predicted to be one of the dominant C(2)H reactions in hydrocarbon combustion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...