Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 11(62): 38944-38948, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-35492469

RESUMO

We have given, for the first time, physicochemical insight into the electronic structure routes from half-metallic to magnetic semiconducting triazine g-C4N3. To this end, three material designs have been proposed using density functional calculations. In one design, this half-metal is first made semiconducting via hydrogenation, then tailored with B and N atomic species, which gives a new prototype of the antiferromagnetic semiconductor monolayer HC4N3BN. In the others, it can be rendered spin gapless semiconducting with H and B or C, followed by F or O tailoring, which eventually leads to the two new bipolar ferromagnetic semiconductors HC4N3BF and HC4N3CO. These monolayers are considered to be novel materials in spintronics.

2.
Phys Rev Lett ; 122(24): 240401, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31322372

RESUMO

Correlations between distant particles are central to many puzzles and paradoxes of quantum mechanics and, at the same time, underpin various applications such as quantum cryptography and metrology. Originally in 1935, Einstein, Podolsky, and Rosen (EPR) used these correlations to argue against the completeness of quantum mechanics. To formalize their argument, Schrödinger subsequently introduced the notion of quantum steering. Still, the question of which quantum states can be used for EPR steering and which cannot remained open. Here we show that quantum steering can be viewed as an inclusion problem in convex geometry. For the case of two spin-1/2 particles, this approach completely characterizes the set of states leading to EPR steering. In addition, we discuss the generalization to higher-dimensional systems as well as generalized measurements. Our results find applications in various protocols in quantum information processing, and moreover they are linked to quantum mechanical phenomena such as uncertainty relations and the question of which observables in quantum mechanics are jointly measurable.

3.
J Chem Phys ; 144(21): 214905, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27276968

RESUMO

Due to the lack of treatment of long-range dispersion energies, density functional theory with local and semilocal approximations of exchange-correlation energy is known to fail in describing van der Waals complexes, including polymer crystals. This limitation can be overcome by using a different class of functionals, called van der Waals density functional (vdW-DF), originally developed by Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)]. In this work, we performed a systematic study of structural properties of polymeric crystals using the original vdW-DF functional by Dion et al. and its variants and refinements. Our study shows that this class of functional outperforms the conventional LDA or PBE functionals and gives results with similar accuracy to that of empirical dispersion-corrected schemes such as DFT-D. This study suggests the use of vdW-DF2 functional - a revised version of vdW-DF functional - to obtain a high-fidelity prediction of structural and other properties of polymeric materials.

4.
Nanotechnology ; 26(11): 115201, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25709081

RESUMO

We investigate the effects of uniaxial strain on the transport properties of vertical devices made of two misoriented (or twisted) graphene layers, which partially overlap each other. We find that because of the different orientations of the two graphene lattices, their Dirac points can be displaced and separated in the k-space by the effects of strain. Hence, a finite conduction gap as large as a few hundred meV can be obtained in the device with a small strain of only a few percent. The dependence of this conduction gap on the strain magnitude, strain direction, channel orientation and twist angle are clarified and presented. On this basis, the strong modulation of conductance and significant improvement of Seebeck coefficient are shown. The suggested devices therefore may be very promising for improving applications of graphene, e.g., as transistors or strain and thermal sensors.

5.
Nanotechnology ; 25(16): 165201, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24670679

RESUMO

By means of numerical simulation, in this work we study the effects of uniaxial strain on the transport properties of strained graphene heterojunctions and explore the possibility of achieving good performance of graphene transistors using these hetero-channels. It is shown that a finite conduction gap can open in the strain junctions due to strain-induced deformation of the graphene bandstructure. These hetero-channels are then demonstrated to significantly improve the operation of graphene field-effect transistors (FETs). In particular, the ON/OFF current ratio can reach a value of over 10(5). In graphene normal FETs, the transconductance, although reduced compared to the case of unstrained devices, is still high, while good saturation of current can be obtained. This results in a high voltage gain and a high transition frequency of a few hundreds of GHz for a gate length of 80 nm. In graphene tunneling FETs, subthreshold swings lower than 30 mV /dec, strong nonlinear effects such as gate-controllable negative differential conductance, and current rectification are observed.

6.
J Chem Phys ; 133(15): 154110, 2010 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-20969373

RESUMO

We derive a power expansion of the correlation energy of weakly bound systems within the random phase approximation (RPA), in terms of the Coulomb interaction operator, and we show that the asymptotic limit of the second- and third-order terms yields the van der Waals (vdW) dispersion energy terms derived by Zaremba-Kohn and Axilrod-Teller within perturbation theory. We then show that the use of the second-order expansion of the RPA correlation energy results in rather inaccurate binding energy curves for weakly bonded systems, and discuss the implications of our findings for the development of approximate vdW density functionals. We also assess the accuracy of different exchange energy functionals used in the derivation of vdW density functionals.

7.
J Chem Phys ; 132(4): 044109, 2010 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-20113021

RESUMO

We present a study of the binding energy (BE) curves of rare gas and alkaline-earth dimers using an energy functional that includes exact exchange (EXX) and correlation energies within the random phase approximation (RPA). Our results for the equilibrium positions and long range behavior of the potential energy curves show great improvements over those obtained at the density functional theory level, within local and semilocal approximations. BEs are improved as well in the case of rare gas dimers. For Ar and Kr, the accuracy of our results is comparable to that of so-called van der Waals density functionals, although EXX/RPA yields BE curves that agree better with experiment for large separation distances, as expected. We also discuss shortcomings of the EXX/RPA perturbative approach and analyze possible sources of error in the description of the potential energy curve of alkaline-earth dimers, in particular, Be(2), exhibiting an unphysical maximum at large separations. We suggest that the lack of self-consistency in current EXX/RPA approaches might be largely responsible for most of the observed shortcomings. Finally, we present a tight-binding approach to obtain the eigenvalues of the dielectric matrix entering the calculation of the RPA correlation energy that greatly improves the efficiency of EXX/RPA calculations.

8.
J Phys Chem A ; 114(4): 1944-52, 2010 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-20043660

RESUMO

We investigated intermolecular interactions in weakly bonded molecular assemblies from first principles, by combining exact exchange energies (EXX) with correlation energies defined by the adiabatic connection fluctuation-dissipation theorem, within the random phase approximation (RPA). We considered three different types of molecular systems: the benzene crystal, the methane crystal, and self-assembled monolayers of phenylenediisocyanide, which involve aromatic rings, sp(3)-hybridized C-H bonds, and isocyanide triple bonds, respectively. We describe in detail how computed equilibrium lattice constants and cohesive energies may be affected by the input ground state wave functions and orbital energies, by the geometries of molecular monomers in the assemblies, and by the inclusion of zero-point energy contribution to the total energy. We find that the EXX/RPA perturbative approach provides an overall satisfactory, first-principles description of dispersion forces. However, binding energies tend to be underestimated, and possible reasons for this discrepancy are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...