Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 133(16)2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32661087

RESUMO

Giardia lamblia, a widespread parasitic protozoan, attaches to the host gastrointestinal epithelium by using the ventral disc, a complex microtubule (MT) organelle. The 'cup-like' disc is formed by a spiral MT array that scaffolds numerous disc-associated proteins (DAPs) and higher-order protein complexes. In interphase, the disc is hyperstable and has limited MT dynamics; however, it remains unclear how DAPs confer these properties. To investigate mechanisms of hyperstability, we confirmed the disc-specific localization of over 50 new DAPs identified by using both a disc proteome and an ongoing GFP localization screen. DAPs localize to specific disc regions and many lack similarity to known proteins. By screening 14 CRISPRi-mediated DAP knockdown (KD) strains for defects in hyperstability and MT dynamics, we identified two strains - DAP5188KD and DAP6751KD -with discs that dissociate following high-salt fractionation. Discs in the DAP5188KD strain were also sensitive to treatment with the MT-polymerization inhibitor nocodazole. Thus, we confirm here that at least two of the 87 known DAPs confer hyperstable properties to the disc MTs, and we anticipate that other DAPs contribute to disc MT stability, nucleation and assembly.


Assuntos
Giardia lamblia , Giardia lamblia/genética , Interfase , Microtúbulos , Organelas , Proteoma , Proteínas de Protozoários/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-28620589

RESUMO

Giardia is a highly prevalent, understudied protistan parasite causing significant diarrheal disease worldwide. Its life cycle consists of two stages: infectious cysts ingested from contaminated food or water sources, and motile trophozoites that colonize and attach to the gut epithelium, later encysting to form new cysts that are excreted into the environment. Current understanding of parasite physiology in the host is largely inferred from transcriptomic studies using Giardia grown axenically or in co-culture with mammalian cell lines. The dearth of information about the diversity of host-parasite interactions occurring within distinct regions of the gastrointestinal tract has been exacerbated by a lack of methods to directly and non-invasively interrogate disease progression and parasite physiology in live animal hosts. By visualizing Giardia infections in the mouse gastrointestinal tract using bioluminescent imaging (BLI) of tagged parasites, we recently showed that parasites colonize the gut in high-density foci. Encystation is initiated in these foci throughout the entire course of infection, yet how the physiology of parasites within high-density foci in the host gut differs from that of cells in laboratory culture is unclear. Here we use BLI to precisely select parasite samples from high-density foci in the proximal intestine to interrogate in vivo Giardia gene expression in the host. Relative to axenic culture, we noted significantly higher expression (>10-fold) of oxidative stress, membrane transporter, and metabolic and structural genes associated with encystation in the high-density foci. These differences in gene expression within parasite foci in the host may reflect physiological changes associated with high-density growth in localized regions of the gut. We also identified and verified six novel cyst-specific proteins, including new components of the cyst wall that were highly expressed in these foci. Our in vivo transcriptome data support an emerging view that parasites encyst early in localized regions in the gut, possibly as a consequence of nutrient limitation, and also impact local metabolism and physiology.


Assuntos
Perfilação da Expressão Gênica , Giardia/metabolismo , Giardíase/parasitologia , Intestinos/parasitologia , Encistamento de Parasitas/fisiologia , Proteínas de Protozoários/metabolismo , Animais , Parede Celular/metabolismo , Técnicas de Cocultura , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Giardia/enzimologia , Giardia/genética , Giardia/crescimento & desenvolvimento , Interações Hospedeiro-Parasita , Estágios do Ciclo de Vida , Camundongos , Camundongos Endogâmicos C57BL , Família Multigênica , Estresse Oxidativo , Proteínas de Protozoários/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...