Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 78(7): 3039-3050, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35437938

RESUMO

BACKGROUND: Unravelling the genetic architecture of non-target-site resistance (NTSR) traits in weed populations can inform questions about the inheritance, trade-offs and fitness costs associated with these traits. Classical quantitative genetics approaches allow study of the genetic architecture of polygenic traits even where the genetic basis of adaptation remains unknown. These approaches have the potential to overcome some of the limitations of previous studies into the genetics and fitness of NTSR. RESULTS: Using a quantitative genetic analysis of 400 pedigreed Alopecurus myosuroides seed families from nine field-collected populations, we found strong heritability for resistance to the acetolactate synthase and acetyl CoA carboxylase inhibitors (h2  = 0.731 and 0.938, respectively), and evidence for shared additive genetic variance for resistance to these two different herbicide modes of action, rg  = 0.34 (survival), 0.38 (biomass). We find no evidence for genetic correlations between life-history traits and herbicide resistance, indicating that resistance to these two modes of action is not associated with large fitness costs in blackgrass. We do, however, demonstrate that phenotypic variation in plant flowering characteristics is heritable, h2  = 0.213 (flower height), 0.529 (flower head number), 0.449 (time to flowering) and 0.372 (time to seed shed), demonstrating the potential for adaptation to other nonchemical management practices (e.g. mowing of flowering heads) now being adopted for blackgrass control. CONCLUSION: These results highlight that quantitative genetics can provide important insight into the inheritance and genetic architecture of NTSR, and can be used alongside emerging molecular techniques to better understand the evolutionary and fitness landscape of herbicide resistance. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Acetolactato Sintase , Herbicidas , Acetil-CoA Carboxilase/genética , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Humanos , Poaceae
2.
Front Plant Sci ; 12: 651381, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34267768

RESUMO

The evolution of resistance to pesticides in agricultural systems provides an opportunity to study the fitness costs and benefits of novel adaptive traits. Here, we studied a population of Amaranthus tuberculatus (common waterhemp), which has evolved resistance to glyphosate. The growth and fitness of seed families with contrasting levels of glyphosate resistance was assessed in the absence of glyphosate to determine their ability to compete for resources under intra- and interspecific competition. We identified a positive correlation between the level of glyphosate resistance and gene copy number for the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) glyphosate target, thus identifying gene amplification as the mechanism of resistance within the population. Resistant A. tuberculatus plants were found to have a lower competitive response when compared to the susceptible phenotypes with 2.76 glyphosate resistant plants being required to have an equal competitive effect as a single susceptible plant. A growth trade-off was associated with the gene amplification mechanism under intra-phenotypic competition where 20 extra gene copies were associated with a 26.5 % reduction in dry biomass. Interestingly, this growth trade-off was mitigated when assessed under interspecific competition from maize.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...