Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathophysiology ; 30(1): 1-12, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36649009

RESUMO

Nasopharyngeal carcinoma (NPC) is the most common cancer among head and neck cancers in Vietnam. We aimed to identify the rate of a 30 bp deletion mutation of the LMP1-EBV gene in nasopharyngeal biopsy tissue samples, the HLA genotypes of NPC patients, and the relationship between these two targets. Patients with NPC at Can Tho Oncology Hospital from September 2014 to December 2018 were selected. A length of 30 bp of the del-LMP1-EBV gene was analyzed using a PCR technique, and the HLA genotypes in patients' blood samples were analyzed with PCR-SSO technology. HLA-B*15 gene carriers had the highest risk of 30 bp LMP1-EBV gene deletion mutation, which was found in 51 out of 70 patients (72.9%). Carriers of the HLA-B*15 allele had a 4.6-fold increased risk of a 30 bp del-LMP1-EBV gene compared with non-carriers of this allele. The initial identification of NPC was related to the 30 bp del-LMP1-EBV gene and high frequencies of the -A*02, -B*15, -DRB1*12, -DQB1*03, and -DQA1*01 HLA alleles. Our study results suggest an association of the 30 bp del-LMP1-EBV gene and the HLA-B*15 allele with NPC susceptibility.

3.
J Biol Chem ; 292(18): 7519-7530, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28314773

RESUMO

NRF2 (nuclear factor erythroid 2-related factor 2) is a key transcriptional activator that mediates the inducible expression of antioxidant genes. NRF2 is normally ubiquitinated by KEAP1 (Kelch-like ECH-associated protein 1) and subsequently degraded by proteasomes. Inactivation of KEAP1 by oxidative stress or electrophilic chemicals allows NRF2 to activate transcription through binding to antioxidant response elements (AREs) and recruiting histone acetyltransferase CBP (CREB-binding protein). Whereas KEAP1-dependent regulation is a major determinant of NRF2 activity, NRF2-mediated transcriptional activation varies from context to context, suggesting that other intracellular signaling cascades may impact NRF2 function. To identify a signaling pathway that modifies NRF2 activity, we immunoprecipitated endogenous NRF2 and its interacting proteins from mouse liver and identified glucocorticoid receptor (GR) as a novel NRF2-binding partner. We found that glucocorticoids, dexamethasone and betamethasone, antagonize diethyl maleate-induced activation of NRF2 target genes in a GR-dependent manner. Dexamethasone treatment enhanced GR recruitment to AREs without affecting chromatin binding of NRF2, resulting in the inhibition of CBP recruitment and histone acetylation at AREs. This repressive effect was canceled by the addition of histone deacetylase inhibitors. Thus, GR signaling decreases NRF2 transcriptional activation through reducing the NRF2-dependent histone acetylation. Consistent with these observations, GR signaling blocked NRF2-mediated cytoprotection from oxidative stress. This study suggests that an impaired antioxidant response by NRF2 and a resulting decrease in cellular antioxidant capacity account for the side effects of glucocorticoids, providing a novel viewpoint for the pathogenesis of hypercorticosteroidism.


Assuntos
Dexametasona/farmacologia , Histonas/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Animais , Histonas/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Receptores de Glucocorticoides/genética
4.
Mol Cells ; 39(12): 909-914, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28008161

RESUMO

Epithelial-mesenchymal transition (EMT) is a critical step in the acquisition of the migratory and invasive capabilities associated with metastatic competence. Cysteine-rich protein 61 (CCN1/Cyr61) has been implicated as an important mediator in the proliferation and metastasis of breast cancer. Hence, Cyr61 and associated pathways are attractive targets for therapeutic interventions directed against the EMT. In the present study, we report that baicalein significantly inhibits the expression of Cyr61 and migration and invasion of MDA-MB231 human breast cancer cells. Exposure to baicalein led to increased E-cadherin expression, possibly due to the ubiquitination of Snail and Slug, which was mediated by the Cyr61/Akt/glycogen synthase kinase 3ß (GSK3ß) pathway. Further analysis revealed that baicalein inhibited the expression of lysyl oxidase like-2 (LOXL-2), which is a functional collaborator of Snail and Slug, and subsequently attenuated the direct interaction between LOXL-2 and Snail or Slug, thereby enhancing GSK3ß-dependent Snail and Slug degradation. Our findings provide new insights into the antimetastatic mechanism of baicalein and may contribute to its beneficial use in breast cancer therapies.


Assuntos
Aminoácido Oxirredutases/metabolismo , Proteína Rica em Cisteína 61/antagonistas & inibidores , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Flavanonas/farmacologia , Antígenos CD , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Caderinas/biossíntese , Linhagem Celular Tumoral , Proteína Rica em Cisteína 61/biossíntese , Proteína Rica em Cisteína 61/genética , Proteína Rica em Cisteína 61/metabolismo , Regulação para Baixo/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...