Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Rep (Amst) ; 31: e00649, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34277363

RESUMO

Chinese hamster ovary (CHO) cells are the most widely used host for the expression of therapeutic proteins. Recently, significant progress has been made due to advances in genome sequence and annotation quality to unravel the black box CHO. Nevertheless, in many cases the link between genotype and phenotype in the context of suspension cultivated production cell lines is still not fully understood. While frameshift approaches targeting coding genes are frequently used, the non-coding regions of the genome have received less attention with respect to such functional annotation. Importantly, for non-coding regions frameshift knock-out strategies are not feasible. In this study, we developed a CRISPR-mediated screening approach that performs full deletions of genomic regions to enable the functional study of both the translated and untranslated genome. An in silico pipeline for the computational high-throughput design of paired guide RNAs (pgRNAs) directing CRISPR/AsCpf1 was established and used to generate a library tackling process-related genes and long non-coding RNAs. Next generation sequencing analysis of the plasmid library revealed a sufficient, but highly variable pgRNA composition. Recombinase-mediated cassette exchange was applied for pgRNA library integration rather than viral transduction to ensure single copy representation of pgRNAs per cell. After transient AsCpf1 expression, cells were cultivated over two sequential batches to identify pgRNAs which massively affected growth and survival. By comparing pgRNA abundance, depleted candidates were identified and individually validated to verify their effect.

2.
Metab Eng ; 66: 268-282, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33965614

RESUMO

With the emergence of new CRISPR/dCas9 tools that enable site specific modulation of DNA methylation and histone modifications, more detailed investigations of the contribution of epigenetic regulation to the precise phenotype of cells in culture, including recombinant production subclones, is now possible. These also allow a wide range of applications in metabolic engineering once the impact of such epigenetic modifications on the chromatin state is available. In this study, enhanced DNA methylation tools were targeted to a recombinant viral promoter (CMV), an endogenous promoter that is silenced in its native state in CHO cells, but had been reactivated previously (ß-galactoside α-2,6-sialyltransferase 1) and an active endogenous promoter (α-1,6-fucosyltransferase), respectively. Comparative ChIP-analysis of histone modifications revealed a general loss of active promoter histone marks and the acquisition of distinct repressive heterochromatin marks after targeted methylation. On the other hand, targeted demethylation resulted in autologous acquisition of active promoter histone marks and loss of repressive heterochromatin marks. These data suggest that DNA methylation directs the removal or deposition of specific histone marks associated with either active, poised or silenced chromatin. Moreover, we show that de novo methylation of the CMV promoter results in reduced transgene expression in CHO cells. Although targeted DNA methylation is not efficient, the transgene is repressed, thus offering an explanation for seemingly conflicting reports about the source of CMV promoter instability in CHO cells. Importantly, modulation of epigenetic marks enables to nudge the cell into a specific gene expression pattern or phenotype, which is stabilized in the cell by autologous addition of further epigenetic marks. Such engineering strategies have the added advantage of being reversible and potentially tunable to not only turn on or off a targeted gene, but also to achieve the setting of a desirable expression level.


Assuntos
Infecções por Citomegalovirus , Metilação de DNA , Animais , Células CHO , Cricetinae , Cricetulus , Metilação de DNA/genética , Epigênese Genética/genética , Código das Histonas/genética
3.
Biotechnol J ; 15(3): e1900359, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31785035

RESUMO

Lower cultivation temperature dramatically affects cell growth and cellular productivity in Chinese hamster ovary cells (CHO) and is often used in industrial applications with the aim to enhance productivity. Cold-inducible proteins whose activity is induced at lower temperature play an important role in understanding the mechanisms of cold-induced changes in gene expression. One of these mechanisms is increased transcription of specific target genes controlled by sequence elements in cold-inducible promoters. This study provides a list of cold-inducible genes and endogenous cold-inducible promoters of CHO cells. Transcriptome data before and after a temperature shift from 37 to 33 °C are analyzed to identify 94 cold-inducible genes, which are highly expressed and have a high fold change in expression after the temperature shift. Cold-inducible promoters are identified from the top ten cold-inducible genes, showing up to 11-fold increased luciferase expression at lowered temperature in transient transfections. Additionally, several common transcription factor binding sites are identified in the top cold-inducible promoter sequences and expression of their corresponding transcription factors over temperature-shift cultivation is evaluated. These may be responsible for enhanced promoter activity under lower temperature and can be used as engineering targets.


Assuntos
Biologia Computacional/métodos , Regiões Promotoras Genéticas/genética , Animais , Sítios de Ligação , Células CHO , Cricetulus , Estabilidade de RNA/genética , Estabilidade de RNA/fisiologia , Análise de Sequência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...