Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Behav ; 190: 28-33, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29447836

RESUMO

White adipose tissue (WAT) and brown adipose tissue (BAT) have sympathetic nervous system (SNS) and sensory innervations. Previous studies from our laboratory revealed central neuroanatomical evidence of WAT sensory and BAT SNS crosstalk with double labeling of inguinal WAT (IWAT) sensory and interscapular BAT (IBAT) SNS neurons. We previously demonstrated that WAT lipolysis increases IBAT temperature, but this effect is absent when IWAT afferents are surgically denervated, which severs both sensory and SNS nerves. It is possible that WAT sensory feedback can regulate SNS drive to itself and other WAT and BAT depots, and thus contribute to the existence of differential SNS outflow to fat during different energy challenges. Here we selectively denervated IWAT sensory nerves in Siberian hamsters using capsaicin and measured norepinephrine turnover (NETO) i.e., SNS drive to WAT and BAT depots, IBAT uncoupling protein 1 (UCP1) expression, body mass, fat mass, blood glucose, and food consumed after a 24-h cold exposure. IWAT sensory denervation decreased both IWAT and IBAT NETO and IBAT UCP1 expression. IWAT sensory denervation, however, increased mesenteric WAT (MWAT) NETO after the 24-h cold exposure and did not modify epididymal WAT (EWAT) and retroperitoneal WAT (RWAT) NETO compared with respective controls. Body mass, fat mass, blood glucose, and food consumed were unchanged across groups. RWAT and EWAT mass decreased in capsaicin-injected hamsters, but did not in the vehicle hamsters. These results functionally demonstrate the existence of IWAT sensory and IBAT SNS crosstalk and that a disruption in this sensory-SNS feedback mechanism modifies SNS drive to IWAT, IBAT, and MWAT, but not EWAT and RWAT.


Assuntos
Tecido Adiposo Marrom/inervação , Tecido Adiposo Branco/inervação , Denervação , Gordura Intra-Abdominal/inervação , Sistema Nervoso Simpático/fisiologia , Animais , Glicemia/metabolismo , Índice de Massa Corporal , Capsaicina , Cricetinae , Ingestão de Alimentos/fisiologia , Masculino , Norepinefrina/metabolismo , Nervos Periféricos/efeitos dos fármacos , Phodopus , Proteína Desacopladora 1/biossíntese
2.
Mol Metab ; 6(8): 854-862, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28752049

RESUMO

OBJECTIVE: We have previously shown that the consumption of a low-carbohydrate ketogenic diet (KD) by mice leads to a distinct physiologic state associated with weight loss, increased metabolic rate, and improved insulin sensitivity [1]. Furthermore, we identified fibroblast growth factor 21 (FGF21) as a necessary mediator of the changes, as mice lacking FGF21 fed KD gain rather than lose weight [2]. FGF21 activates the sympathetic nervous system (SNS) [3], which is a key regulator of metabolic rate. Thus, we considered that the SNS may play a role in mediating the metabolic adaption to ketosis. METHODS: To test this hypothesis, we measured the response of mice lacking all three ß-adrenergic receptors (ß-less mice) to KD feeding. RESULTS: In contrast to wild-type (WT) controls, ß-less mice gained weight, increased adipose tissue depots mass, and did not increase energy expenditure when consuming KD. Remarkably, despite weight-gain, ß-less mice were insulin sensitive. KD-induced changes in hepatic gene expression of ß-less mice were similar to those seen in WT controls eating KD. Expression of FGF21 mRNA rose over 60-fold in both WT and ß-less mice fed KD, and corresponding circulating FGF21 levels were 12.5 ng/ml in KD-fed wild type controls and 35.5 ng/ml in KD-fed ß-less mice. CONCLUSIONS: The response of ß-less mice distinguishes at least two distinct categories of physiologic effects in mice consuming KD. In the liver, KD regulates peroxisome proliferator-activated receptor alpha (PPARα)-dependent pathways through an action of FGF21 independent of the SNS and beta-adrenergic receptors. In sharp contrast, induction of interscapular brown adipose tissue (BAT) and increased energy expenditure absolutely require SNS signals involving action on one or more ß-adrenergic receptors. In this way, the key metabolic actions of FGF21 in response to KD have diverse effector mechanisms.


Assuntos
Adaptação Fisiológica , Dieta Cetogênica , Receptores Adrenérgicos/metabolismo , Redução de Peso , Animais , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/fisiologia
3.
Am J Physiol Regul Integr Comp Physiol ; 312(1): R132-R145, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27881398

RESUMO

White adipose tissue (WAT) and brown adipose tissue (BAT) are innervated and regulated by the sympathetic nervous system (SNS). It is not clear, however, whether there are shared or separate central SNS outflows to WAT and BAT that regulate their function. We injected two isogenic strains of pseudorabies virus, a retrograde transneuronal viral tract tracer, with unique fluorescent reporters into interscapular BAT (IBAT) and inguinal WAT (IWAT) of the same Siberian hamsters to define SNS pathways to both. To test the functional importance of SNS coordinated control of BAT and WAT, we exposed hamsters with denervated SNS nerves to IBAT to 4°C for 16-24 h and measured core and fat temperatures and norepinephrine turnover (NETO) and uncoupling protein 1 (UCP1) expression in fat tissues. Overall, there were more SNS neurons innervating IBAT than IWAT across the neuroaxis. However, there was a greater percentage of singly labeled IWAT neurons in midbrain reticular nuclei than singly labeled IBAT neurons. The hindbrain had ~30-40% of doubly labeled neurons while the forebrain had ~25% suggesting shared SNS circuitry to BAT and WAT across the brain. The raphe nucleus, a key region in thermoregulation, had ~40% doubly labeled neurons. Hamsters with IBAT SNS denervation maintained core body temperature during acute cold challenge and had increased beige adipocyte formation in IWAT. They also had increased IWAT NETO, temperature, and UCP1 expression compared with intact hamsters. These data provide strong neuroanatomical and functional evidence of WAT and BAT SNS cross talk for thermoregulation and beige adipocyte formation.


Assuntos
Adipócitos Bege/fisiologia , Adipócitos/fisiologia , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/fisiologia , Regulação da Temperatura Corporal/fisiologia , Sistema Nervoso Simpático/fisiologia , Adipócitos Bege/citologia , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/inervação , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/inervação , Animais , Cricetinae , Retroalimentação Fisiológica/fisiologia , Masculino , Phodopus , Termotolerância/fisiologia
4.
Physiol Rep ; 4(10)2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27230905

RESUMO

Brown/beige adipocytes are therapeutic targets to combat obesity due to their abilities to dissipate energy through adaptive thermogenesis. Most studies investigating induction of brown/beige adipocytes were conducted in cold condition (e.g., 4°C); much is unknown about how the thermogenic program of brown/beige adipocytes is regulated in thermoneutral condition (e.g., 30°C), which is within the thermal comfort zone of human dwellings in daily life. Therefore, this study aims to characterize the thermogenic program of brown/beige adipocytes in mice housed under ambient (22°C) versus thermoneutral condition (30°C). Male mice raised at 22°C or 30°C were fed either chow diet or high-fat (HF) diet for 20 weeks. Despite less food intake, chow-fed mice housed at 30°C remained the same body weight compared to mice at 22°C. However, these thermoneutrally housed mice displayed a decrease in the expression of thermogenic program in both brown and white fat depots with larger adipocytes. When pair-fed with chow diet, thermoneutrally housed mice showed an increase in body weight. Moreover, thermoneutrality increased body weight of mice fed with HF diet. This was associated with decreased expression of the thermogenic program in both brown and white fat depots of the thermoneutrally housed mice. The downregulation of the thermogenic program might have resulted from decreased sympathetic drive in the thermoneutrally housed mice evident by decreased expression of tyrosine hydroxylase expression and norepinephrine turnover in both brown and white fat depots. Our data demonstrate that thermoneutrality may negatively regulate the thermogenic program and sympathetic drive, leading to increased adiposity in mice.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Adiposidade/fisiologia , Dieta Hiperlipídica/efeitos adversos , Termogênese/fisiologia , Animais , Temperatura Corporal/fisiologia , Feminino , Masculino , Camundongos
5.
Am J Physiol Regul Integr Comp Physiol ; 306(6): R375-86, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24452544

RESUMO

There is a link between visceral white adipose tissue (WAT) and the metabolic syndrome in humans, with health improvements produced with small visceral WAT reduction. By contrast, subcutaneous WAT provides a site for lipid storage that is rather innocuous relative to ectopic lipid storage in muscle or liver. The sympathetic nervous system (SNS) is the principal initiator for lipolysis in WAT by mammals. Nothing is known, however, about the central origins of the SNS circuitry innervating the only true visceral WAT in rodents, mesenteric WAT (MWAT), which drains into the hepatic portal vein. We tested whether the central sympathetic circuits to subcutaneous [inguinal WAT (IWAT)] and visceral WAT (MWAT) are separate or shared and whether they possess differential sympathetic drives with food deprivation in Siberian hamsters. Using two isogenic strains of pseudorabies virus, a retrograde transneuronal viral tract tracer within the same hamsters, we found some overlap (∼20-55% doubly infected neurons) between the two circuitries across the neural axis with lesser overlap proximal to the depots (spinal cord and sympathetic chain) and with more neurons involved in the innervation of IWAT than MWAT in some brain regions. Food deprivation triggered a greater sympathetic drive to subcutaneous (IWAT) than visceral (MWAT) depots. Collectively, we demonstrated both shared and separate populations of brain, spinal cord, and sympathetic chain neurons ultimately project to a subcutaneous WAT depot (IWAT) and the only visceral WAT depot in rodents (MWAT). In addition, the lipolytic stimulus of food deprivation only increased SNS drive to subcutaneous fat (IWAT).


Assuntos
Tecido Adiposo Branco/inervação , Sistema Nervoso Central/citologia , Privação de Alimentos/fisiologia , Gânglios Simpáticos/citologia , Gordura Intra-Abdominal/inervação , Gordura Subcutânea/inervação , Tecido Adiposo Branco/metabolismo , Fibras Adrenérgicas/fisiologia , Animais , Sistema Nervoso Central/metabolismo , Cricetinae , Gânglios Simpáticos/metabolismo , Herpesvirus Suídeo 1 , Gordura Intra-Abdominal/metabolismo , Lipólise/fisiologia , Masculino , Marcadores do Trato Nervoso , Phodopus , Gordura Subcutânea/metabolismo
6.
Am J Physiol Endocrinol Metab ; 304(12): E1338-47, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23612999

RESUMO

Leptin, the primary white adipose tissue (WAT) adipokine, is thought to convey lipid reserve information to the brain via the circulation. Because WAT responds to environmental/internal signals in a fat pad-specific (FPS) manner, systemic signals such as leptin would fail to communicate such distinctive information. Saturation of brain leptin transport systems also would fail to convey increased lipid levels beyond that point. WAT possesses sensory innervation exemplified by proven sensory-associated peptides in nerves within the tissue and by viral sensory nerve-specific transneuronal tract tracer, H129 strain of herpes simplex virus 1 labeling of dorsal root ganglia (DRG) pseudounipolar neurons, spinal cord and central sensory circuits. Leptin as a paracrine factor activating WAT sensory innervation could supply the brain with FPS information. Therefore, we tested for and found the presence of the long form of the leptin receptor (Ob-Rb) on DRG pseudounipolar neurons immunohistochemically labeled after injections of Fluorogold, a retrograde tract tracer, into inguinal WAT (IWAT). Intra-IWAT leptin injections (300 ng) significantly elevated IWAT nerve spike rate within 5 min and persisted for at least 30 min. Intra-IWAT leptin injections also induced significant c-Fos immunoreactivity (ir), indicating neural activation across DRG pseudounipolar sensory neurons labeled with Fluorogold IWAT injections. Intraperitoneal leptin injection did not increase c-Fos-ir in DRG or the arcuate nucleus, nor did it increase arcuate signal transducer and activator of transcription 3 phosphorylation-ir. Collectively, these results strongly suggest that endogenous leptin secreted from white adipocytes functions as a paracrine factor to activate spinal sensory nerves innervating the tissue.


Assuntos
Tecido Adiposo Branco/inervação , Tecido Adiposo Branco/fisiologia , Leptina/fisiologia , Células Receptoras Sensoriais/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/fisiologia , Cricetinae , Relação Dose-Resposta a Droga , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/fisiologia , Leptina/farmacologia , Masculino , Nervos Periféricos/efeitos dos fármacos , Nervos Periféricos/fisiologia , Phodopus , Células Receptoras Sensoriais/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...