Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(22): 15441-15448, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38741954

RESUMO

Calcium alginate elastic capsules with a core-shell structure are versatile spherical solid beads that can be produced in large quantities using various techniques. This type of capsule is a promising platform for cell culture applications, owing to its mechanical elasticity and transparency. This paper reports the production of calcium alginate capsules with high consistency, and for the first time, demonstrates the feasibility of the capsules for microalgal cultivation. Cell growth analysis reveals that the vibrationally-shaken calcium alginate elastic capsule platform yielded a higher maximum cell number (4.86 × 108 cells per mL) during the cultivation period than the control solution platforms. Aquafeed and food supplements for humans are the targeted applications of this novel platform.

2.
Micromachines (Basel) ; 14(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37630073

RESUMO

Cellular response to mechanical stimuli is a crucial factor for maintaining cell homeostasis. The interaction between the extracellular matrix and mechanical stress plays a significant role in organizing the cytoskeleton and aligning cells. Tools that apply mechanical forces to cells and tissues, as well as those capable of measuring the mechanical properties of biological cells, have greatly contributed to our understanding of fundamental mechanobiology. These tools have been extensively employed to unveil the substantial influence of mechanical cues on the development and progression of various diseases. In this report, we present an economical and high-performance uniaxial cell stretching device. This paper reports the detailed operation concept of the device, experimental design, and characterization. The device was tested with MDA-MB-231 breast cancer cells. The experimental results agree well with previously documented morphological changes resulting from stretching forces on cancer cells. Remarkably, our new device demonstrates comparable cellular changes within 30 min compared with the previous 2 h stretching duration. This third-generation device significantly improved the stretching capabilities compared with its previous counterparts, resulting in a remarkable reduction in stretching time and a substantial increase in overall efficiency. Moreover, the device design incorporates an open-source software interface, facilitating convenient parameter adjustments such as strain, stretching speed, frequency, and duration. Its versatility enables seamless integration with various optical microscopes, thereby yielding novel insights into the realm of mechanobiology.

3.
Small ; : e2303435, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37292037

RESUMO

Micro elastofluidics is an emerging research field that encompasses characteristics of conventional microfluidics and fluid-structure interactions. Micro elastofluidics is expected to enable practical applications, for instance, where direct contact between biological samples and fluid handling systems is required. Besides design optimization, choosing a proper material is critical to the practical use of micro elastofluidics upon interaction with biological interface and after its functional lifetime. Biodegradable polymers are one of the most studied materials for this purpose. Micro elastofluidic devices made of biodegradable polymers possess exceptional mechanical elasticity, excellent bio compatibility, and structural degradability into non-toxic products. This article provides an insightful and systematic review of the utilization of biodegradable polymers in digital and continuous-flow micro elastofluidics.

4.
Micromachines (Basel) ; 13(11)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36363898

RESUMO

We investigated experimentally, analytically, and numerically the formation process of double emulsion formations under a dripping regime in a tri-axial co-flow capillary device. The results show that mismatches of core and shell droplets under a given flow condition can be captured both experimentally and numerically. We propose a semi-analytical model using the match ratio between the pinch-off length of the shell droplet and the product of the core growth rate and its pinch-off time. The mismatch issue can be avoided if the match ratio is lower than unity. We considered a model with the wall effect to predict the size of the matched double emulsion. The model shows slight deviations with experimental data if the Reynolds number of the continuous phase is lower than 0.06 but asymptotically approaches good agreement if the Reynolds number increases from 0.06 to 0.14. The numerical simulation generally agrees with the experiments under various flow conditions.

5.
Lab Chip ; 22(8): 1508-1518, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35344578

RESUMO

A liquid marble is a liquid droplet coated with a shell of microparticles. Liquid marbles have served as a unique microreactor for chemical reactions and cell culture. Mixing is an essential task for liquid marbles as a microreactor. However, the potential of liquid marble-based microreactors is significantly limited due to the lack of effective mixing strategies. Most mixing strategies used manual and contact-based actuation schemes. This paper reports the development of a manipulation scheme that induces fluid motion into a liquid marble, leading to enhanced mixing. By inducing rotation on a horizontal axis, we significantly increased the mixing rate by 27.6 times compared to a non-actuated liquid marble and reduced the reaction time by more than 10 times. The proposed method provides a simple, continuous, precise, and controllable high-performance mixing strategy on a liquid marble platform.


Assuntos
Carbonato de Cálcio
6.
Small ; 18(4): e2105748, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34874620

RESUMO

Transformation of conventional 2D platforms into unusual 3D configurations provides exciting opportunities for sensors, electronics, optical devices, and biological systems. Engineering material properties or controlling and modulating stresses in thin films to pop-up 3D structures out of standard planar surfaces has been a highly active research topic over the last decade. Implementation of 3D micro and nanoarchitectures enables unprecedented functionalities including multiplexed, monolithic mechanical sensors, vertical integration of electronics components, and recording of neuron activities in 3D organoids. This paper provides an overview on stress engineering approaches to developing 3D functional microsystems. The paper systematically presents the origin of stresses generated in thin films and methods to transform a 2D design into an out-of-plane configuration. Different types of 3D micro and nanostructures, along with their applications in several areas are discussed. The paper concludes with current technical challenges and potential approaches and applications of this fast-growing research direction.


Assuntos
Eletrônica , Nanoestruturas , Nanoestruturas/química , Organoides
7.
Micromachines (Basel) ; 12(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34442532

RESUMO

The upregulated expression of tyrosine kinase AXL has been reported in several hematologic and solid human tumors, including gastric, breast, colorectal, prostate and ovarian cancers. Thus, AXL can potentially serve as a diagnostic and prognostic biomarker for various cancers. This paper reports the first ever loop-mediated isothermal amplification (LAMP) in a core-shell bead assay for the detection of AXL gene overexpression. We demonstrated simple instrumentation toward a point-of-care device to perform LAMP. This paper also reports the first ever use of core-shell beads as a microreactor to perform LAMP as an attempt to promote environmentally-friendly laboratory practices.

8.
Lab Chip ; 21(7): 1418, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33877236

RESUMO

Correction for 'Liquid marble-based digital microfluidics - fundamentals and applications' by Chin Hong Ooi et al., Lab Chip, 2021, DOI: .

9.
Soft Matter ; 17(15): 4069-4076, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33725064

RESUMO

A liquid marble (LM) is a droplet coated with microparticles that isolate the liquid interior from its surroundings, making it perfectly non-wetting. This attractive feature allows the LM to perform useful tasks such as coalescence, targeted delivery, and controlled release. The non-wetting characteristic also allows the LM to float on a carrier liquid. The growing number of applications in digital microfluidics requires further insights into the fundamental properties of a LM such as its effective surface tension. Although the coating provides the LM with various desirable characteristics, its random construction presents a major obstacle to accurate optical analysis. This paper presents a novel method to measure the effective surface tension of a floating LM using X-ray imaging and curve fitting procedures. X-ray imaging reveals the true LM liquid-air interface hidden by the coating particles. Analysis of this interface showed that the effective surface tension of a LM is not significantly different from that of its liquid content. This indicates that the particle coating might not have significantly altered the behaviour of the liquid interface. We also found that our method is sensitive enough to detect the variations across individual LMs.

10.
Lab Chip ; 21(7): 1199-1216, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33656019

RESUMO

Liquid marbles are droplets with volume typically on the order of microliters coated with hydrophobic powder. Their versatility, ease of use and low cost make liquid marbles an attractive platform for digital microfluidics. This paper provides the state of the art of discoveries in the physics of liquid marbles and their practical applications. The paper first discusses the fundamental properties of liquid marbles, followed by the summary of different techniques for the synthesis of liquid marbles. Next, manipulation techniques for handling liquid marbles are discussed. Applications of liquid marbles are categorised according to their use as chemical and biological reactors. The paper concludes with perspectives on the future development of liquid marble-based digital microfluidics.

11.
Chemphyschem ; 22(1): 99-105, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33164308

RESUMO

Liquid marbles are a promising microreactor platform that recently attracts significant research interest owing to their ability to accommodate a wide range of micro reactions. However, the use of destructive and ex-situ methods to monitor reactions impairs the potential of liquid-marble-based microreactors. This paper proposes a non-destructive, in situ, and cost-effective digital-imaging-based colourimetric monitoring method for transparent liquid marbles, using the enzymatic hydrolysis of starch as an illustrative example. The colourimetric reaction between starch and iodine produces a complex that exhibits a dark blue colour. We found that the absorbance of red channel of digital images showed a linear relationship with starch concentration with high sensitivity and repeatability. This digital-imaging-based colourimetric method was used to study the hydrolysis of starch by α-amylase. The results show high accuracy and applicability of first-order kinetics for this reaction. The demonstration of digital-imaging-based colourimetry indicates the potential of liquid marble-based microreactors.


Assuntos
Carbonato de Cálcio/metabolismo , Colorimetria , alfa-Amilases/metabolismo , Carbonato de Cálcio/química , Hidrólise , Amido/química , Amido/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...