Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 298: 134253, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35292276

RESUMO

The role of bacterial interaction is vital to control bacterial functions; however, it has not been fully understood in microbial consortia (including anaerobic digestion). In this study, fluorouracil (FU), which is an anticancer agent and a quorum sensing (QS) inhibitor to some of the Gram-negative bacteria was found to inhibit methane production from sewage sludge under anaerobic conditions, as shown in a result where methane production in the presence of FU was eight times lower than the control (sewage sludge without FU). Whereas FU did not influence the hydrolysis process, in the acidogenesis/acetogenesis process, butyrate, and acetate accumulated in samples with FU. Also, in the methanogenesis process, FU remarkably inhibited methane production by acetoclastic methanogens rather than by the hydrogenotrophic ones. This result agreed with the result that growth and methane production of Methanosarcina acetivorans C2A was inhibited in the presence of FU. However, the inhibitory effect of FU was high in the condition that both bacteria and archaea were active. It indicates that FU influences methanogens and bacteria in the process of methane fermentation. The analyses of microbial communities (bacteria and archaea) showed that the abundance ratio of the Firmicutes phyla is high, and hydrogenotrophic methanogens become dominant in the presence of FU. Conversely, the abundance of Spirochaetes significantly decreased under FU. The inhibition of methane production by FU was due to the growth inhibition of methanogenic archaea and the changes in the composition of the bacterial population.


Assuntos
Reatores Biológicos , Esgotos , Anaerobiose , Archaea , Bactérias , Reatores Biológicos/microbiologia , Fluoruracila/farmacologia , Metano , Esgotos/microbiologia
2.
Appl Microbiol Biotechnol ; 103(3): 1485-1495, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30554390

RESUMO

Quorum sensing (QS) plays a key role in activating bacterial functions through small molecules called autoinducers. In this study, the QS of Gram-negative bacteria in waste sewage sludge (WSS) was downregulated by adding the quorum quenching enzyme, AiiM lactonase, which cleaved the acyl-homoserine lactone (AHL) autoinducer signals from Gram-negative bacteria, and subsequently methane production was inhibited by over 400%. The pH was lowered after 2 days in the anaerobic fermentation whereas protease activity at the hydrolysis step was almost the same with or without AiiM. The production of acetic acid significantly increased during the fermentation in the presence of AiiM. The bacterial community at day 2 indicated that the population of Gram-positive bacteria increased in the presence of AiiM, and the percentage of Gram-negative bacteria decreased in the WSS containing AiiM. The change in the bacterial community in the presence of AiiM may be due to the different antimicrobial agents produced in the WSS because some of the Gram-positive bacteria were killed by adding the solid-phase extraction (SPE) fraction from the WSS without AiiM. In contrast, the SPE fraction with AiiM had reduced bactericidal activity against Gram-negative bacteria. Thus, bacterial signaling between Gram-negative bacteria is critical for methane production by the microbial consortia.


Assuntos
Anaerobiose/fisiologia , Reatores Biológicos/microbiologia , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Negativas/fisiologia , Metano/biossíntese , Percepção de Quorum/fisiologia , Esgotos/microbiologia , Purificação da Água/métodos , Acil-Butirolactonas/metabolismo , Fermentação/fisiologia , Bactérias Gram-Positivas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...