Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tissue Barriers ; : 2309025, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38282263

RESUMO

Cilia are hair-like structures found on the surface of nearly all vertebrate cell types where they have central roles in regulating development and orchestrating physiological events. There is growing interest in understanding the mechanisms of ciliogenesis due to the profound consequences that follow from the absence of proper ciliary function, which include diseases that affect the renal, respiratory, reproductive, nervous, visual, and digestive systems, among others. Now, a recent report has discerned new roles for the transcription factor estrogen-related receptor gamma a (esrrγa) in ciliated cell ontogeny within the embryonic zebrafish kidney and other tissues. Further, the team of researchers discovered that genetic ablation of murine homolog ERRγ in adult kidney epithelial cells led to shortened cilia, which precedes cystogenesis. These intriguing findings expand our fundamental understanding of the pathological basis of cilia defects, which is relevant for identifying future therapeutic targets for ciliopathies.

2.
FEBS J ; 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37997009

RESUMO

Multiciliated cells (MCCS) form bundles of cilia and their activities are essential for the proper development and physiology of many organ systems. Not surprisingly, defects in MCCs have profound consequences and are associated with numerous disease states. Here, we discuss the current understanding of MCC formation, with a special focus on the genetic and molecular mechanisms of MCC fate choice and differentiation. Furthermore, we cast a spotlight on the use of zebrafish to study MCC ontogeny and several recent advances made in understanding MCCs using this vertebrate model to delineate mechanisms of MCC emergence in the developing kidney.

3.
Cells ; 12(10)2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37408253

RESUMO

Endocannabinoid signaling plays crucial roles in human physiology in the function of multiple systems. The two cannabinoid receptors, CB1 and CB2, are cell membrane proteins that interact with both exogenous and endogenous bioactive lipid ligands, or endocannabinoids. Recent evidence has established that endocannabinoid signaling operates within the human kidney, as well as suggests the important role it plays in multiple renal pathologies. CB1, specifically, has been identified as the more prominent ECS receptor within the kidney, allowing us to place emphasis on this receptor. The activity of CB1 has been repeatedly shown to contribute to both diabetic and non-diabetic chronic kidney disease (CKD). Interestingly, recent reports of acute kidney injury (AKI) have been attributed to synthetic cannabinoid use. Therefore, the exploration of the ECS, its receptors, and its ligands can help provide better insight into new methods of treatment for a range of renal diseases. This review explores the endocannabinoid system, with a focus on its impacts within the healthy and diseased kidney.


Assuntos
Canabinoides , Insuficiência Renal Crônica , Humanos , Endocanabinoides/metabolismo , Ligantes , Rim/patologia , Insuficiência Renal Crônica/patologia , Canabinoides/farmacologia , Canabinoides/metabolismo
4.
Tissue Barriers ; : 2219605, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37254823

RESUMO

Kidney disease is a devastating condition affecting millions of people worldwide, where over 100,000 patients in the United States alone remain waiting for a lifesaving organ transplant. Concomitant with a surge in personalized medicine, single-gene mutations, and polygenic risk alleles have been brought to the forefront as core causes of a spectrum of renal disorders. With the increasing prevalence of kidney disease, it is imperative to make substantial strides in the field of kidney genetics. Nephrons, the core functional units of the kidney, are epithelial tubules that act as gatekeepers of body homeostasis by absorbing and secreting ions, water, and small molecules to filter the blood. Each nephron contains a series of proximal and distal segments with explicit metabolic functions. The embryonic zebrafish provides an ideal platform to systematically dissect the genetic cues governing kidney development. Here, we review the use of zebrafish to discover nephrogenesis genes.

5.
J Dev Biol ; 11(1)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36976103

RESUMO

Nephrons are the functional units which comprise the kidney. Each nephron contains a number of physiologically unique populations of specialized epithelial cells that are organized into discrete domains known as segments. The principles of nephron segment development have been the subject of many studies in recent years. Understanding the mechanisms of nephrogenesis has enormous potential to expand our knowledge about the basis of congenital anomalies of the kidney and urinary tract (CAKUT), and to contribute to ongoing regenerative medicine efforts aimed at identifying renal repair mechanisms and generating replacement kidney tissue. The study of the zebrafish embryonic kidney, or pronephros, provides many opportunities to identify the genes and signaling pathways that control nephron segment development. Here, we describe recent advances of nephron segment patterning and differentiation in the zebrafish, with a focus on distal segment formation.

6.
J Dev Biol ; 11(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36648903

RESUMO

Cilia are microtubule-based organelles that project from the cell surface. In humans and other vertebrates, possession of a single cilium structure enables an assortment of cellular processes ranging from mechanosensation to fluid propulsion and locomotion. Interestingly, cells can possess a single cilium or many more, where so-called multiciliated cells (MCCs) possess apical membrane complexes with several dozen or even hundreds of motile cilia that beat in a coordinated fashion. Development of MCCs is, therefore, integral to control fluid flow and/or cellular movement in various physiological processes. As such, MCC dysfunction is associated with numerous pathological states. Understanding MCC ontogeny can be used to address congenital birth defects as well as acquired disease conditions. Today, researchers used both in vitro and in vivo experimental models to address our knowledge gaps about MCC specification and differentiation. In this review, we summarize recent discoveries from our lab and others that have illuminated new insights regarding the genetic pathways that direct MCC ontogeny in the embryonic kidney using the power of the zebrafish animal model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...