Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(19): 6780-6793, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37140431

RESUMO

Aerogels are becoming a promising platform to fabricate photothermal materials for use in solar steam generation (SSG), which have remarkable application potential in solar desalination, due to their excellent thermal management, salt resistance, and considerable water evaporation rate. In this work, a novel photothermal material is fabricated by forming a suspension between sugarcane bagasse fibers (SBF) and poly(vinyl alcohol), tannic acid (TA), and Fe3+ solutions via hydrogen bonds of hydroxyl groups. After freeze drying, the fabricated SBF aerogel-based photothermal (SBFAP) material possesses a 3D interconnected porous microstructure, which could enhance water transportation ability, reduce thermal conductivity, and quickly dissolve salt crystals on the SBFAP surface. Thanks to the formation of micro/nanosized complexes between TA and Fe3+ ions on the SBFAP material, the SBFAP exhibits high light capture and water evaporation rate (2.28 kg m-2 h-1). In particular, due to strong hydrogen bonding and the SBF, the SBFAP material is reinforced, thereby exhibiting excellent structural stability in seawater. Moreover, the high salt tolerance of SBFAP favors its high desalination performance for at least 76 days of continuous evaporation under actual conditions. This research paves the way for the fabrication of natural cellulose fiber-based photothermal materials for application in solar desalination.

2.
Sci Total Environ ; 811: 152261, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34902426

RESUMO

This study investigated a dual-chamber microbial fuel cell-based biosensor (DC-MFC-B) for monitoring copper and arsenic in municipal wastewater. Operational conditions, including pH, flow rate, a load of organic substrate and external resistance load, were optimized to improve the biosensor's sensitivity. The DC-MFC-B's toxicity response was established under the electroactive bacteria inhibition rate function to a specific heavy metal level as well as the recovery of the DC-MFC-B. Results show that the DC-MFC-B was optimized at the operating conditions of 1000 Ω external resistance, COD 300 mg L-1 and 50 mM K3Fe(CN)6 as a catholyte solution. The voltage output of the DC-MFC-B decreased with increasing in the copper and arsenic concentrations. A significant linear relationship between the maximum voltage of the biosensor and the heavy metal concentration was obtained with a coefficient of R2 = 0.989 and 0.982 for copper and arsenic, respectively. The study could detect copper (1-10 mg L-1) and arsenic (0.5-5 mg L-1) over wider range compared to other studies. The inhibition ratio for both copper and arsenic was proportional to the concentrations, indicating the electricity changes are mainly dependent on the activity of the electrogenic bacteria on the anode surface. Moreover, the DC-MFC-B was also recovered in few hours after being cleaned with a fresh medium. It was found that the concentration of the toxicant effected on the recovery time and the recovery time was varied between 4 and 12 h. In short, this work provided new avenues for the practical application of microbial fuel cells as a heavy metal biosensor.


Assuntos
Arsênio , Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Cobre , Eletricidade , Eletrodos , Águas Residuárias
3.
Bioresour Technol ; 318: 123886, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32732066

RESUMO

A sequential anode-cathode double-chamber microbial fuel cell (MFC) is a promising system for simultaneously removing contaminants, recovering nutrients and producing energy from swine wastewater. To improve sulfonamide antibiotics (SMs)'s removal in the continuous operating of MFC, one new pomelo peel-derived biochar was applied in the anode chamber in this study. Results demonstrated that SMs can be absorbed onto the heterogeneous surfaces of biochar through pore-filling and π-π EDA interaction. Adding biochar to a certain concentration (500 mg/L) could enhance the efficiency in removing sulfamethoxazole, sulfadiazine and sulfamethazine to 82.44-88.15%, 53.40-77.53% and 61.12-80.68%, respectively. Moreover, electricity production, COD and nutrients removal were improved by increasing the concentration of biochar. Hence, it is proved that adding biochar in MFC could effectively improve the performance of MFC in treating swine wastewater containing SMs.


Assuntos
Fontes de Energia Bioelétrica , Águas Residuárias , Animais , Antibacterianos , Carvão Vegetal , Eletricidade , Eletrodos , Sulfonamidas , Suínos
4.
Sci Total Environ ; 722: 137854, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32197162

RESUMO

In Vietnam, swine wastewater is generally treated using anaerobic processes. Nevertheless, the level of pollutants in effluent after anaerobic treatment remains very high, thereby necessitating further treatment. This research was conducted to assess the applicability of duckweed (Lemna minor) for purifying wastewater collected from a household swine wastewater treatment system in Hanoi, Vietnam. After the anaerobically treated wastewater was diluted 10-fold, it was fed continuously to lab-scale stabilization ponds with and without planted duckweed at a hydraulic retention time of 5 days under ambient conditions. The chemical oxygen demand (COD), total nitrogen (T-N), and total phosphorus (T-P) concentrations in the influent were, respectively, 260-290 mg/L, 24-28 mg/L, and 1.4-1.8 mg/L. The COD, T-N, T-P removals in the pond with duckweed (74%, 84%, and 84%) were much higher than in the pond without duckweed (71%, 55%, and 58%). The duckweed greatly enhanced the first-order removal rates by 1.4, 2.0, and 3.2 times, respectively, for COD, T-N, and T-P in the ponds. Although the primary purification mechanisms in the ponds were sedimentation and adsorption, the duckweed grown with the relative growth rate of 0.07-0.16 d-1 showed nutrient uptake activity from the wastewater. Biofilms formed on the duckweed roots apparently promoted COD removal and degradation of organic nitrogen into ammonia. Stabilization ponds planted with duckweed are anticipated for use as co-beneficial systems for wastewater treatment and biomass production.


Assuntos
Araceae , Purificação da Água , Animais , Nitrogênio , Nutrientes , Lagoas , Suínos , Vietnã , Eliminação de Resíduos Líquidos , Águas Residuárias
5.
Sci Rep ; 10(1): 3243, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32094438

RESUMO

In this work, two copper-based biometamaterials were engineered using leaves of water cabbage (Pistia stratiotes) and purple bauhinia (Phanera purpurea) as templates. The copper sputtering was implemented to produce a thin copper film on the surface of leaves. The scanning electron microscopy (SEM) images exhibited the root hair-like nanostructure of water cabbage leaf and single comb-like nanostructure of purple bauhinia leaf. In spite of copper coating, the leaf surfaces of water cabbage and purple bauhinia were black and exhibited excellent light absorption at visible and near infrarrred wavelengths. It was estimated that these two types of leaves could absorb roughly 90% of light. Finite-difference time-domain (FDTD) calculations predicted the low reflectance stemming from the leaf nanostructures and copper coating layer. Because of the low cost of copper as a coating metal and simple procedure, this can be a promising method for quick fabrication of a thin copper film on the leaf nanostructure for application in blackbody or as the light absorbers.


Assuntos
Biomimética , Cobre/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Folhas de Planta/ultraestrutura , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...