Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(3): 1690-1699, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38189783

RESUMO

Monitoring contamination from per- and polyfluoroalkyl substances (PFASs) in water systems impacted by aqueous film-forming foams (AFFFs) typically addresses a few known PFAS groups. Given the diversity of PFASs present in AFFFs, current analytical approaches do not comprehensively address the range of PFASs present in these systems. A suspect-screening and nontarget analysis (NTA) approach was developed and applied to identify novel PFASs in groundwater samples contaminated from historic AFFF use. A total of 88 PFASs were identified in both passive samplers and grab samples, and these were dominated by sulfonate derivatives and sulfonamide-derived precursors. Several ultrashort-chain (USC) PFASs (≤C3) were detected, 11 reported for the first time in Australian groundwater. Several transformation products were identified, including perfluoroalkane sulfonamides (FASAs) and perfluoroalkane sulfinates (PFASis). Two new PFASs were reported (((perfluorohexyl)sulfonyl)sulfamic acid; m/z 477.9068 and (E)-1,1,2,2,3,3,4,5,6,7,8,8,8-tridecafluorooct-6-ene-1-sulfonic acid; m/z 424.9482). This study highlights that several PFASs are overlooked using standard target analysis, and therefore, the potential risk from all PFASs present is likely to be underestimated.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Austrália , Água
2.
J Hazard Mater ; 445: 130441, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36462244

RESUMO

This paper aims to describe the performance of a soil washing plant (SWP) for remediating a per- and poly-fluoroalkyl substances (PFASs)-contaminated soil with a high clay content (61%). The SWP used both physical and chemical processes; fractionation of the soil particles by size and partitioning of PFASs into the aqueous phase to remove PFASs from the soil. Contaminated water was treated in series with granulated activated carbon (GAC) and ion-exchange resin and reused within the SWP. Approximately 2200 t (dry weight) of PFAS-contaminated soil was treated in 25 batches of 90 t each, with a throughput of approximately 11 t soil/hr. Efficiency of the SWP was measured by observed decreases in total and leachable concentrations of PFASs in the soil. Average removal efficiencies (RE) were up to 97.1% for perfluorocarboxylic acids and 94.9% for perfluorosulfonic acids. REs varied among different PFASs depending on their chemistry (functional head group, carbon chain length) and were independent of the total PFAS concentrations in each soil batch. Mass balance analysis found approximately 90% of the PFAS mass in the soil was transferred to the wash solution and > 99.9% of the PFAS mass in the wash solution was transferred onto the GAC without any breakthrough.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Solo/química , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Argila , Poluição da Água/análise , Carvão Vegetal , Plantas
3.
Chemosphere ; 310: 136869, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36272629

RESUMO

Foam fractionation is one solution to recover per- and polyfluoroalkyl substances (PFASs) from aqueous sources. The separation process is based on the sorption of PFASs to the air-water interface of bubbles. In many practical cases, the PFAS concentration in the polluted liquid is too low to sustain foam formation and requires the support of a cosurfactant not only to act as a collector of PFAS but also to produce and sustain foam for effective separation. However, there is a lack of information regarding the appropriate choice of cosurfactant and its quantitative effect on the interfacial partitioning of PFASs on the air bubbles. This study is directed to (i) evaluate the effectiveness of four cosurfactants with different-charged headgroups (i.e., anionic, cationic, zwitterionic and nonionic) for foam fractionation of PFASs, and (ii) estimate the air-water interfacial partitioning (Ki) of PFASs in the presence of four different types of cosurfactants. The Ki values span over 4 orders of magnitude with good correlation with PFASs molar volume. All of the cosurfactants were effective for the removal of the long chain PFASs (1.2-4 logs). The cationic and zwitterionic surfactants have oppositely charged head groups with respect to the anionic PFASs and therefore facilitate increased separation due to charge interactions. Some short chain PFASs (e.g., Perfluorobutanesulfonic acid (PFBS), Perfluoropentanesulfonic acid (PFPeS)) can be effectively removed using cationic and zwitterionic cosurfactants.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Fluorocarbonos/análise , Tensoativos , Água
4.
Environ Sci Technol ; 56(14): 10030-10041, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35763608

RESUMO

This study investigated the mobilization of a wide range of per- and polyfluoroalkyl substances (PFASs) present in aqueous film-forming foams (AFFFs) in water-saturated soils through one-dimensional (1-D) column experiments with a view to assessing the feasibility of their remediation by soil desorption and washing. Results indicated that sorption/desorption of most of the shorter-carbon-chain PFASs (C ≤ 6) in soil reached greater than 99% rapidly─after approximately two pore volumes (PVs) and were well predicted by an equilibrium transport model, indicating that they will be readily removed by soil washing technologies. In contrast, the equilibrium model failed to predict the mobilization of longer-chain PFASs (C ≥ 7), indicating the presence of nonequilibrium sorption/desorption (confirmed by a flow interruption experiment). The actual time taken to attain 99% sorption/desorption was up to 5 times longer than predicted by the equilibrium model (e.g., ∼62 PVs versus ∼12 PVs predicted for perfluorooctane sulfonate (PFOS) in loamy sand). The increasing contribution of hydrophobic interactions over the electrostatic interactions is suggested as the main driving factor of the nonequilibrium processes. The inverse linear relationship (R2 = 0.6, p < 0.0001) between the nonequilibrium mass transfer rate coefficient and the Freundlich sorption coefficient could potentially be a useful means for preliminary evaluation of potential nonequilibrium sorption/desorption of PFASs in soils.


Assuntos
Fluorocarbonos , Poluentes do Solo , Poluentes Químicos da Água , Fluorocarbonos/análise , Solo/química , Água , Poluentes Químicos da Água/análise
5.
Chemosphere ; 286(Pt 1): 131622, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34303903

RESUMO

The widespread use of per- and polyfluoroalkyl substances (PFASs)-related products such as aqueous film-forming foams (AFFF) has led to increasing contamination of groundwater systems. The concentration of PFASs in AFFF-impacted groundwater can be several orders of magnitude higher than the drinking water standard. There is a need for a sustainable and effective sorbent to remove PFASs from groundwater. This work aims to investigate the sorption of PFASs in groundwater by biochar column. The specific objectives are to understand the influences of PFASs properties and groundwater chemistry to PFASs sorption by biochar. The PFASs-spiked Milli-Q water (including 19 PFASs) and four aqueous film-forming foams (AFFF)-impacted groundwater were used. The partitioning coefficients (log Kd) of long chain PFASs ranged from 0.77 to 4.63 while for short chain PFASs they remained below 0.68. For long chain PFASs (C ≥ 7), log Kd increased by 0.5 and 0.8 for each CF2 moiety of PFCAs and PFSAs, respectively. Dissolved organic matter (DOM) was the most influential factor in PFASs sorption over pH, salinity, and specific ultraviolet absorbance (SUVA). DOM contained hydrophobic compounds and metal ions which can form DOM-PFASs complexes to provide more sorption sites for PFASs. The finding is useful for executing PFASs remediation by biochar filtration column, especially legacy long chain PFASs, for groundwater remediation.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Carvão Vegetal , Fluorocarbonos/análise , Água , Poluentes Químicos da Água/análise
6.
Environ Sci Technol ; 56(1): 368-378, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34932318

RESUMO

Soil contaminated with aqueous film-forming foams (AFFFs) containing per- and polyfluoroalkyl substances (PFASs) at firefighting training sites has become a major concern worldwide. To date, most studies have focused on assessing soil-water partitioning behavior of PFASs and the key factors that can affect their sorption, whereas PFASs leaching from contaminated soils have not yet been widely investigated. This study evaluated the leaching and desorption of a wide range of PFASs from twelve contaminated soils using the Australian Standard Leaching Procedure (ASLP), the U.S. EPA Multiple Extraction Procedure (MEP), and Leaching Environmental Assessment Framework (LEAF). All three leaching tests provided a similar assessment of PFAS leaching behavior. Leaching of PFASs from soils was related to C-chain lengths and their functional head groups. While short-chain (CF2 ≤ 6) PFASs were easily desorbed and leached, long-chain PFASs were more difficult to desorb. PFASs with a carboxylate head group were leached more readily and to a greater extent than those with a sulfonate or sulfonamide head group. Leaching of long-chain PFASs was pH-dependent where leaching increased at high pH, while leaching of short-chain PFASs was less sensitive to pH. Comparing different leaching tests showed that the results using the alkaline ASLP were similar to the cumulative MEP data and the former might be more practical for routine use than the MEP. No single soil property was adequately able to describe PFAS leaching from the soils. Overall, the PFAS chemical structure appeared to have a greater effect on PFAS leaching from soil than soil physicochemical properties.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Austrália , Poluição Ambiental , Fluorocarbonos/análise , Solo/química , Poluentes Químicos da Água/análise
7.
Sci Total Environ ; 761: 144216, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33360129

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus which causes coronavirus disease (COVID-19), has spread rapidly across the globe infecting millions of people and causing significant health and economic impacts. Authorities are exploring complimentary approaches to monitor this infectious disease at the community level. Wastewater-based epidemiology (WBE) approaches to detect SARS-CoV-2 RNA in municipal wastewater are being implemented worldwide as an environmental surveillance approach to inform health authority decision-making. Owing to the extended excretion of SARS-CoV-2 RNA in stool, WBE can surveil large populated areas with a longer detection window providing unique information on the presence of pre-symptomatic and asymptomatic cases that are unlikely to be screened by clinical testing. Herein, we analysed SARS-CoV-2 RNA in 24-h composite wastewater samples (n = 63) from three wastewater treatment plants (WWTPs) in Brisbane, Queensland, Australia from 24th of February to 1st of May 2020. A total of 21 samples were positive for SARS-CoV-2, ranging from 135 to 11,992 gene copies (GC)/100 mL of wastewater. Detections were made in a Southern Brisbane WWTP in late February 2020, up to three weeks before the first clininal case was reported there. Wastewater samples were generally positive during the period with highest caseload data. The positive SARS-CoV-2 RNA detection in wastewater while there were limited clinical reported cases demonstrates the potential of WBE as an early warning system to identify hotspots and target localised public health responses, such as increased individual testing and the provision of health warnings.


Assuntos
COVID-19 , Coronavirus , Austrália , Humanos , Queensland , RNA , SARS-CoV-2 , Águas Residuárias
8.
Environ Sci Technol ; 54(24): 15883-15892, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33249833

RESUMO

The aim of this study was to assess the soil-water partitioning behavior of a wider range of per- and polyfluoroalkyl substances (PFASs) onto soils covering diverse soil properties. The PFASs studied include perfluoroalkyl carboxylates (PFCAs), perfluoroalkane sulfonates (PFSAs), fluorotelomer sulfonates (FTSs), nonionic perfluoroalkane sulfonamides (FASAs), cyclic PFAS (PFEtCHxS), per- and polyfluoroalkyl ether acids (GenX, ADONA, 9Cl-PF3ONS), and three aqueous film-forming foam (AFFF)-related zwitterionic PFASs (AmPr-FHxSA, TAmPr-FHxSA, 6:2 FTSA-PrB). Soil-water partitioning coefficients (log Kd values) of the PFASs ranged from less than zero to approximately three, were chain-length-dependent, and were significantly linearly related to molecular weight (MW) for PFASs with MW > 350 g/mol (R2 = 0.94, p < 0.0001). Across all soils, the Kd values of all short-chain PFASs (≤5 -CF2- moieties) were similar and varied less (<0.5 log units) compared to long-chain PFASs (>0.5 to 1.5  log units) and zwitterions AmPr- and TAmPr-FHxSA (∼1.5 to 2 log units). Multiple soil properties described sorption of PFASs better than any single property. The effects of soil properties on sorption were different for anionic, nonionic, and zwitterionic PFASs. Solution pH could change both PFAS speciation and soil chemistry affecting surface complexation and electrostatic processes. The Kd values of all PFASs increased when solution pH decreased from approximately eight to three. Short-chain PFASs were less sensitive to solution pH than long-chain PFASs. The results indicate the complex interactions of PFASs with soil surfaces and the need to consider both PFAS type and soil properties to describe mobility in the environment.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/análise , Concentração de Íons de Hidrogênio , Solo , Água , Poluentes Químicos da Água/análise
9.
J Environ Manage ; 250: 109526, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31521036

RESUMO

Hospital wastewater contains acetaminophen (ACT) and nutrient, which need adequate removal and monitoring to prevent impact to environment and community. This study developed a pilot scale vertical flow constructed wetland (CW) to (1) remove high-dose ACT and pollutants in hospital wastewater and (2) identify the correlation of peroxidase enzyme extruded by Scirpus validus and pollutants removal efficiency. By that correlation, a low-cost method to monitor pollutants removal was drawn. Plants, such as Scirpus validus, generated peroxidase enzymes to alleviate pollutants' stress. Results showed that the CW removed 3.5 to 6 logs of initial concentration 10 mg ACT/L to a recommended level for drinking water. The CW eliminated COD, TKN and TP efficiently, meeting the wastewater discharged standards of Thailand and Vietnam. By various multivariable regression models, concentrations of ACT in CW effluent and enzymes in S. validus exhibited a significant correlation (p < 0.01, R2 = 68.3%). These findings suggested that (i) vertical flow CW could remove high-dose ACT and nutrient and (ii) peroxidase enzymes generated in S. validus, such as soluble and covalent ones, could track ACT removal efficiency. This would help to reduce facilities and analytical cost of micro-pollutants.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Acetaminofen , Nitrogênio , Peroxidase , Peroxidases , Tailândia , Vietnã , Eliminação de Resíduos Líquidos , Áreas Alagadas
10.
Water Res ; 153: 53-62, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30690218

RESUMO

In many low-income countries, the poor conditions of sanitation systems have been a significant cause of mortality since they accelerate waterborne disease transmission. Developing sanitation systems in these countries is a pressing concern in both the public and private sectors. This research investigated a decentralized domestic wastewater treatment system using ultraviolet light-emitting diodes (UV-LEDs). Although UV-LED disinfection has become more widespread in recent years, it is a novel approach for domestic wastewater treatment. Domestic wastewater was pretreated by a low-cost pretreatment system with an inclined settler and a sand filter prior to feeding a novel flow-through UV LED reactor. At an inlet flow rate of 30 L/h, the COD, TSS, and turbidity of the effluent were 17.7 mg/L, 3.0 mg/L, and 3.9 NTU, respectively. UV transmittance at 285 nm was enhanced from 29.1% to 70.4%, improving the influent quality for UV LED disinfection. The flow-through UV LED reactor was operated at various flow rates from 10 to 50 mL/min, resulting in applied UV doses of 69.4 to 47.8 mJ/cm2 respectively. These doses are sufficient for inactivating total coliforms in the wastewater to meet the water reuse guidelines for agriculture for both processed food crops and non-food crops. Fouling, which was observed starting at 2 d of operation, decreased the disinfection efficacy to 27% after 25 days of continuous operation. Of the fouling layer, 67% was attributed to organic matter, in contrast to previous fouling studies with mercury UV lamps in which the fouling layer consisted primarily of inorganic compounds. The fouling was reversed by off-line citric acid cleaning for 4 h after every 400 h of continuous operation.


Assuntos
Águas Residuárias , Purificação da Água , Agricultura , Desinfecção , Raios Ultravioleta
11.
Sci Total Environ ; 651(Pt 1): 1549-1568, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30360283

RESUMO

The development of the photobioreactors (PBs) is recently noticeable as cutting-edge technology while the correlation of PBs' engineered elements such as modellings, configurations, biomass yields, operating conditions and pollutants removal efficiency still remains complex and unclear. A systematic understanding of PBs is therefore essential. This critical review study is to: (1) describe the modelling approaches and differentiate the outcomes; (2) review and update the novel technical issues of PBs' types; (3) study microalgae growth and control determined by PBs types with comparison made; (4) progress and compare the efficiencies of contaminants removal given by PBs' types and (5) identify the future perspectives of PBs. It is found that Monod model's shortcoming in internal substrate utilization is well fixed by modified Droop model. The corroborated data also remarks an array of PBs' types consisting of flat plate, column, tubular, soft-frame and hybrid configuration in which soft-frame and hybrid are the latest versions with higher flexibility, performance and smaller foot-print. Flat plate PBs is observed with biomass yield being 5 to 20 times higher than other PBs types while soft-frame and membrane PBs can also remove pharmaceutical and personal care products (PPCPs) up to 100%. Looking at an opportunity for PBs in sustainable development, the flat plate PBs are applicable in PB-based architectures and infrastructures indicating an encouraging revenue-raising potential.


Assuntos
Desenho de Equipamento , Microalgas/fisiologia , Fotobiorreatores , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Modelos Biológicos , Eliminação de Resíduos Líquidos/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...