Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 808: 152073, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34863750

RESUMO

The use of biochar is changing, and the combined application of biochar with fertilizer is increasingly gaining acceptance. However, the yield gains results reported in the existing literature through the co-application of fertilizer with biochar are conflicting. To resolve this, we utilized a meta-analysis of 627 paired data points extracted from 57 published articles to assess the performance of the co-application of biochar and fertilizers on crop yield compared with the corresponding controls. We also studied the impact of biochar characteristics, experimental conditions, and soil properties on crop yield. Our analysis showed that individually, biochar and inorganic fertilizer increased crop yield by 25.3% ± 3.2 (Bootstrap CI 95%) and 21.9% ± 4.4, respectively. The co-application of biochar with both inorganic and organic fertilizers increased crop yield by 179.6% ± 18.7, however, this data needs to be treated with caution due to the limited dataset. The highest yield increase was observed with amendments to very acidic soils (pH ≤5), but the benefits of biochar were not affected by the rate and the time after the application. In addition, the effects of biochar are enhanced when it is produced at 401-500 °C with a C:N ratio of 31-100. Our results suggest that the co-application of biochar with either inorganic and/or organic fertilizers in acidic soils increase crop productivity compared to amendment with either fertilizer or biochar. Our meta-analysis supports the utilization of biochar to enhance the efficiency and profitability of fertilizers.


Assuntos
Agricultura , Fertilizantes , Carvão Vegetal , Fertilizantes/análise , Nitrogênio/análise , Solo
2.
Environ Sci Pollut Res Int ; 29(5): 7170-7184, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34472026

RESUMO

Biochar compound fertilisers (BCFs) are an emerging technology that combine biochar with nutrients, clays and minerals and can be formulated to address specific issues in soil-plant systems. However, knowledge of BCF performance over consecutive crops and without re-application is limited. This study aims to assess the residual effect of organic BCFs soil-plant nutrient cycling 2 years after application and without additional fertiliser inputs. We applied BCFs and biochar with organic fertiliser amendments and established a crop of ginger and a second crop of turmeric (Curcuma longa) without re-application or additional fertilisation. All treatment formulations included bamboo-biochar and organic fertiliser amendments; however, two novel BCFs were formulated to promote agronomic response in an intensive cropping system. We report here on the effect of treatments on soil and plant macronutrient and micronutrient cycling and turmeric growth, biomass and yield at harvest. Both BCFs (enriched (10 t ha-1) and organo-mineral biochar (8.6 t ha-1) increased foliar K (+155% and +120%) and decreased foliar Mg (-20% and -19%) concentration compared with all other treatments, suggesting antagonism between K and Mg. Plants were limited for K, P and B at harvest but not N, Ca or Mg. Foliar K was dependent on the biochar formulation rather than the rate of application. Biochar-clay aggregates increased K retention and cycling in the soil solution 2 years after application. Clay blended BCFs reduced K limitation in turmeric compared to biochar co-applied with organic amendments, suggesting these blends can be used to manage organic K nutrition. All formulations and rates of biochar increased leaf biomass and shoot-to-root ratio. Novel BCFs should be considered as an alternative to co-applying biochar with organic fertiliser amendments to decrease application rates and increase economic feasibility for farmers. Applying BCFs without re-application or supplementary fertiliser did not provide sufficient K or P reserves in the second year for consecutive cropping. Therefore, supplementary fertilisation is recommended to avoid nutrient deficiency and reduced yield for consecutive organic rhizome crops.


Assuntos
Carvão Vegetal , Fertilizantes , Fertilizantes/análise , Potássio , Solo
3.
Sci Total Environ ; 636: 142-151, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29704711

RESUMO

Biochar has been shown to affect soil microbial diversity and abundance. Soil microbes play a key role in soil nutrient cycling, but there is still a dearth of knowledge on the responses of soil microbes to biochar amendments, particularly for longer-term or repeated applications. We sampled soil from a field trial to determine the individual and combined effects of newly applied (1 year ago), re-applied (1 year ago into aged biochar) and aged (9 years ago) biochar amendments on soil bacterial communities, with the aim of identifying the potential underlying mechanisms or consequences of these effects. Soil bacterial diversity and community composition were analysed by sequencing of 16S rRNA using a Miseq platform. This investigation showed that biochar in soil after 1 year significantly increased bacterial diversity and the relative abundance of nitrifiers and bacteria consuming pyrogenic carbon (C). We also found that the reapplication of biochar had no significant effects on soil bacterial communities. Mantel correlation between bacterial diversity and soil chemical properties for four treatments showed that the changes in soil microbial community composition were well explained by soil pH, electrical conductivity (EC), extractable organic C and total extractable nitrogen (N). These results suggested that the effects of biochar amendment on soil bacterial communities were highly time-dependent. Our study highlighted the acclimation of soil bacteria on receiving repeated biochar amendment, leading to similar bacterial diversity and community structure among 9-years old applied biochar, repeated biochar treatments and control.

4.
Environ Sci Pollut Res Int ; 24(34): 26485-26496, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28948525

RESUMO

Ethylenediaminetetraacetic acid (EDTA) used with electrokinetic (EK) to remediate heavy metal-polluted soils is a toxic chelate for soil microorganisms. Therefore, this study aimed to evaluate the effects of alternative organic chelates to EDTA on improving the microbial properties of a heavy metal-polluted soil subjected to EK. Cow manure extract (CME), poultry manure extract (PME) and EDTA were applied to a lead (Pb) and zinc (Zn)-polluted calcareous soil which were subjected to two electric intensities (1.1 and 3.3 v/cm). Soil carbon pools, microbial activity, microbial abundance (e.g., fungal, actinomycetes and bacterial abundances) and diethylenetriaminepentaacetic acid (DTPA)-extractable Pb and Zn (available forms) were assessed in both cathodic and anodic soils. Applying the EK to soil decreased all the microbial variables in the cathodic and anodic soils in the absence or presence of chelates. Both CME and PME applied with two electric intensities decreased the negative effect of EK on soil microbial variables. The lowest values of soil microbial variables were observed when EK was combined with EDTA. The following order was observed in values of soil microbial variables after treating with EK and chelates: EK + CME or EK + PME > EK > EK + EDTA. The CME and PME could increase the concentrations of available Pb and Zn, although the increase was less than that of EDTA. Overall, despite increasing soil available Pb and Zn, the combination of EK with manures (CME or PME) mitigated the negative effects of using EK on soil microbial properties. This study suggested that the synthetic chelates such as EDTA could be replaced with manures to alleviate the environmental risks of EK application.


Assuntos
Quelantes/toxicidade , Ácido Edético/toxicidade , Recuperação e Remediação Ambiental/métodos , Esterco , Metais Pesados/análise , Microbiologia do Solo , Poluentes do Solo/análise , Animais , Quelantes/química , Ácido Edético/química , Eletricidade , Eletrodos , Cinética , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...