Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 691754, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220915

RESUMO

Terpenoids are a large and diverse class of plant metabolites that also includes volatile mono- and sesquiterpenes which are involved in biotic interactions of plants. Due to the limited natural availability of these terpenes and the tight regulation of their biosynthesis, there is strong interest to introduce or enhance their production in crop plants by metabolic engineering for agricultural, pharmaceutical and industrial applications. While engineering of monoterpenes has been quite successful, expression of sesquiterpene synthases in engineered plants frequently resulted in production of only minor amounts of sesquiterpenes. To identify bottlenecks for sesquiterpene engineering in plants, we have used two nearly identical terpene synthases, snapdragon (Antirrhinum majus) nerolidol/linalool synthase-1 and -2 (AmNES/LIS-1/-2), that are localized in the cytosol and plastids, respectively. Since these two bifunctional terpene synthases have very similar catalytic properties with geranyl diphosphate (GPP) and farnesyl diphosphate (FPP), their expression in target tissues allows indirect determination of the availability of these substrates in both subcellular compartments. Both terpene synthases were expressed under control of the ripening specific PG promoter in tomato fruits, which are characterized by a highly active terpenoid metabolism providing precursors for carotenoid biosynthesis. As AmNES/LIS-2 fruits produced the monoterpene linalool, AmNES/LIS-1 fruits were found to exclusively produce the sesquiterpene nerolidol. While nerolidol emission in AmNES/LIS-1 fruits was 60- to 584-fold lower compared to linalool emission in AmNES/LIS-2 fruits, accumulation of nerolidol-glucosides in AmNES/LIS-1 fruits was 4- to 14-fold lower than that of linalool-glucosides in AmNES/LIS-2 fruits. These results suggest that only a relatively small pool of FPP is available for sesquiterpene formation in the cytosol. To potentially overcome limitations in sesquiterpene production, we transiently co-expressed the key pathway-enzymes hydroxymethylglutaryl-CoA reductase (HMGR) and 1-deoxy-D-xylulose 5-phosphate synthase (DXS), as well as the regulator isopentenyl phosphate kinase (IPK). While HMGR and IPK expression increased metabolic flux toward nerolidol formation 5.7- and 2.9-fold, respectively, DXS expression only resulted in a 2.5-fold increase.

2.
Plant J ; 95(2): 358-370, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29742810

RESUMO

The proteinogenic branched-chain amino acids (BCAAs) leucine, isoleucine and valine are essential nutrients for mammals. In plants, BCAAs double as alternative energy sources when carbohydrates become limiting, the catabolism of BCAAs providing electrons to the respiratory chain and intermediates to the tricarboxylic acid cycle. Yet, the actual architecture of the degradation pathways of BCAAs is not well understood. In this study, gene network modeling in Arabidopsis and rice, and plant-prokaryote comparative genomics detected candidates for 3-methylglutaconyl-CoA hydratase (4.2.1.18), one of the missing plant enzymes of leucine catabolism. Alignments of these protein candidates sampled from various spermatophytes revealed non-homologous N-terminal extensions that are lacking in their bacterial counterparts, and green fluorescent protein-fusion experiments demonstrated that the Arabidopsis protein, product of gene At4g16800, is targeted to mitochondria. Recombinant At4g16800 catalyzed the dehydration of 3-hydroxymethylglutaryl-CoA into 3-methylglutaconyl-CoA, and displayed kinetic features similar to those of its prokaryotic homolog. When at4g16800 knockout plants were subjected to dark-induced carbon starvation, their rosette leaves displayed accelerated senescence as compared with control plants, and this phenotype was paralleled by a marked increase in the accumulation of free and total leucine, isoleucine and valine. The seeds of the at4g16800 mutant showed a similar accumulation of free BCAAs. These data suggest that 3-methylglutaconyl-CoA hydratase is not solely involved in the degradation of leucine, but is also a significant contributor to that of isoleucine and valine. Furthermore, evidence is shown that unlike the situation observed in Trypanosomatidae, leucine catabolism does not contribute to the formation of the terpenoid precursor mevalonate.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Hidroliases/metabolismo , Mitocôndrias/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Técnicas de Silenciamento de Genes , Hidroliases/genética , Isoleucina/metabolismo , Leucina/metabolismo , Metabolismo , Oryza/enzimologia , Oryza/metabolismo , Proteínas de Plantas/genética , Alinhamento de Sequência , Valina/metabolismo
3.
Plant Cell Environ ; 38(7): 1333-46, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25402319

RESUMO

Increasing temperatures due to changing global climate are interfering with plant-pollinator mutualism, an interaction facilitated mainly by floral colour and scent. Gas chromatography-mass spectroscopy analyses revealed that increasing ambient temperature leads to a decrease in phenylpropanoid-based floral scent production in two Petunia × hybrida varieties, P720 and Blue Spark, acclimated at 22/16 or 28/22 °C (day/night). This decrease could be attributed to down-regulation of scent-related structural gene expression from both phenylpropanoid and shikimate pathways, and up-regulation of a negative regulator of scent production, emission of benzenoids V (EOBV). To test whether the negative effect of increased temperature on scent production can be reduced in flowers with enhanced metabolic flow in the phenylpropanoid pathway, we analysed floral volatile production by transgenic 'Blue Spark' plants overexpressing CaMV 35S-driven Arabidopsis thaliana production of anthocyanin pigments 1 (PAP1) under elevated versus standard temperature conditions. Flowers of 35S:PAP1 transgenic plants produced the same or even higher levels of volatiles when exposed to a long-term high-temperature regime. This phenotype was also evident when analysing relevant gene expression as inferred from sequencing the transcriptome of 35S:PAP1 transgenic flowers under the two temperature regimes. Thus, up-regulation of transcription might negate the adverse effects of temperature on scent production.


Assuntos
Proteínas de Arabidopsis/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Petunia/metabolismo , Fatores de Transcrição/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Antocianinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação para Baixo , Flores/genética , Flores/crescimento & desenvolvimento , Cromatografia Gasosa-Espectrometria de Massas , Expressão Gênica , Temperatura Alta , Proteínas Associadas a Pancreatite , Petunia/genética , Petunia/crescimento & desenvolvimento , Fenótipo , Plantas Geneticamente Modificadas , Propanóis/metabolismo , Ácido Chiquímico/metabolismo , Fatores de Transcrição/genética , Ativação Transcricional , Transcriptoma , Regulação para Cima
4.
Metab Eng ; 24: 107-16, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24831707

RESUMO

Recently it was shown that monoterpenes in tomato trichomes (Solanum lycopersicum) are synthesized by phellandrene synthase 1 (PHS1) from the non-canonical substrate neryl diphosphate (NPP), the cis-isomer of geranyl diphosphate (GPP). As PHS1 accepts both NPP and GPP substrates forming different monoterpenes, it was overexpressed in tomato fruits to test if NPP is also available in a tissue highly active in carotenoid production. However, transgenic fruits overexpressing PHS1 produced only small amounts of GPP-derived PHS1 monoterpene products, indicating the absence of endogenous NPP. Therefore, NPP formation was achieved by diverting the metabolic flux from carotenoids via expression of tomato neryl diphosphate synthase 1 (NDPS1). NDPS1 transgenic fruits produced NPP-derived monoterpenes, including nerol, neral and geranial, while displaying reduced lycopene content. NDPS1 co-expression with PHS1 resulted in a monoterpene blend, including ß-phellandrene, similar to that produced from NPP by PHS1 in vitro and in trichomes. Unexpectedly, PHS1×NDPS1 fruits showed recovery of lycopene levels compared to NDPS1 fruits, suggesting that redirection of metabolic flux is only partially responsible for the reduction in carotenoids. In vitro assays demonstrated that NPP serves as an inhibitor of geranylgeranyl diphosphate synthase, thus its consumption by PHS1 leads to recovery of lycopene levels. Monoterpenes produced in PHS1×NDPS1 fruits contributed to direct plant defense negatively affecting feeding behavior of the herbivore Helicoverpa zea and displaying antifungal activity against Botrytis cinerea. These results show that NPP-derived terpenoids can be produced in plant tissues; however, NPP has to be consumed to avoid negative impacts on plant metabolism.


Assuntos
Frutas , Engenharia Metabólica , Monoterpenos/metabolismo , Plantas Geneticamente Modificadas , Fosfatos de Poli-Isoprenil/metabolismo , Solanum lycopersicum , Carotenoides/biossíntese , Carotenoides/genética , Frutas/genética , Frutas/metabolismo , Licopeno , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
5.
Plant Cell ; 25(6): 2022-36, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23757397

RESUMO

Functional gene clusters, containing two or more genes encoding different enzymes for the same pathway, are sometimes observed in plant genomes, most often when the genes specify the synthesis of specialized defensive metabolites. Here, we show that a cluster of genes in tomato (Solanum lycopersicum; Solanaceae) contains genes for terpene synthases (TPSs) that specify the synthesis of monoterpenes and diterpenes from cis-prenyl diphosphates, substrates that are synthesized by enzymes encoded by cis-prenyl transferase (CPT) genes also located within the same cluster. The monoterpene synthase genes in the cluster likely evolved from a diterpene synthase gene in the cluster by duplication and divergence. In the orthologous cluster in Solanum habrochaites, a new sesquiterpene synthase gene was created by a duplication event of a monoterpene synthase followed by a localized gene conversion event directed by a diterpene synthase gene. The TPS genes in the Solanum cluster encoding cis-prenyl diphosphate-utilizing enzymes are closely related to a tobacco (Nicotiana tabacum; Solanaceae) diterpene synthase encoding Z-abienol synthase (Nt-ABS). Nt-ABS uses the substrate copal-8-ol diphosphate, which is made from the all-trans geranylgeranyl diphosphate by copal-8-ol diphosphate synthase (Nt-CPS2). The Solanum gene cluster also contains an ortholog of Nt-CPS2, but it appears to encode a nonfunctional protein. Thus, the Solanum functional gene cluster evolved by duplication and divergence of TPS genes, together with alterations in substrate specificity to utilize cis-prenyl diphosphates and through the acquisition of CPT genes.


Assuntos
Família Multigênica , Proteínas de Plantas/genética , Solanum/genética , Terpenos/metabolismo , Alquil e Aril Transferases/classificação , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Sequência de Bases , Vias Biossintéticas/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Diterpenos/química , Diterpenos/metabolismo , Evolução Molecular , Conversão Gênica , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Variação Genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Dados de Sequência Molecular , Estrutura Molecular , Monoterpenos/química , Monoterpenos/metabolismo , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Solanum/classificação , Solanum/metabolismo , Especificidade da Espécie , Especificidade por Substrato , Terpenos/química , Transferases/classificação , Transferases/genética , Transferases/metabolismo
6.
Plant J ; 75(3): 351-63, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23607888

RESUMO

Geranyl diphosphate (GPP), the precursor of most monoterpenes, is synthesized in plastids from dimethylallyl diphosphate and isopentenyl diphosphate by GPP synthases (GPPSs). In heterodimeric GPPSs, a non-catalytic small subunit (GPPS-SSU) interacts with a catalytic large subunit, such as geranylgeranyl diphosphate synthase, and determines its product specificity. Here, snapdragon (Antirrhinum majus) GPPS-SSU was over-expressed in tomato fruits under the control of the fruit ripening-specific polygalacturonase promoter to divert the metabolic flux from carotenoid formation towards GPP and monoterpene biosynthesis. Transgenic tomato fruits produced monoterpenes, including geraniol, geranial, neral, citronellol and citronellal, while exhibiting reduced carotenoid content. Co-expression of the Ocimum basilicum geraniol synthase (GES) gene with snapdragon GPPS-SSU led to a more than threefold increase in monoterpene formation in tomato fruits relative to the parental GES line, indicating that the produced GPP can be used by plastidic monoterpene synthases. Co-expression of snapdragon GPPS-SSU with the O. basilicum α-zingiberene synthase (ZIS) gene encoding a cytosolic terpene synthase that has been shown to possess both sesqui- and monoterpene synthase activities resulted in increased levels of ZIS-derived monoterpene products compared to fruits expressing ZIS alone. These results suggest that re-direction of the metabolic flux towards GPP in plastids also increases the cytosolic pool of GPP available for monoterpene synthesis in this compartment via GPP export from plastids.


Assuntos
Alquil e Aril Transferases/genética , Antirrhinum/genética , Difosfatos/metabolismo , Diterpenos/metabolismo , Monoterpenos/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Alquil e Aril Transferases/metabolismo , Citosol/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Geraniltranstransferase/genética , Geraniltranstransferase/metabolismo , Sesquiterpenos Monocíclicos , Ocimum basilicum/genética , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Plantas Geneticamente Modificadas , Plastídeos/genética , Plastídeos/metabolismo , Poligalacturonase/genética , Regiões Promotoras Genéticas , Sesquiterpenos/metabolismo
7.
Plant Physiol ; 157(2): 770-89, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21813655

RESUMO

Compounds of the terpenoid class play numerous roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of cultivated tomato (Solanum lycopersicum) contains 44 terpene synthase (TPS) genes, including 29 that are functional or potentially functional. Of these 29 TPS genes, 26 were expressed in at least some organs or tissues of the plant. The enzymatic functions of eight of the TPS proteins were previously reported, and here we report the specific in vitro catalytic activity of 10 additional tomato terpene synthases. Many of the tomato TPS genes are found in clusters, notably on chromosomes 1, 2, 6, 8, and 10. All TPS family clades previously identified in angiosperms are also present in tomato. The largest clade of functional TPS genes found in tomato, with 12 members, is the TPS-a clade, and it appears to encode only sesquiterpene synthases, one of which is localized to the mitochondria, while the rest are likely cytosolic. A few additional sesquiterpene synthases are encoded by TPS-b clade genes. Some of the tomato sesquiterpene synthases use z,z-farnesyl diphosphate in vitro as well, or more efficiently than, the e,e-farnesyl diphosphate substrate. Genes encoding monoterpene synthases are also prevalent, and they fall into three clades: TPS-b, TPS-g, and TPS-e/f. With the exception of two enzymes involved in the synthesis of ent-kaurene, the precursor of gibberellins, no other tomato TPS genes could be demonstrated to encode diterpene synthases so far.


Assuntos
Alquil e Aril Transferases/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Alquil e Aril Transferases/metabolismo , Ciclopentanos/farmacologia , Citosol/enzimologia , Diterpenos do Tipo Caurano/metabolismo , Evolução Molecular , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/enzimologia , Mitocôndrias/enzimologia , Dados de Sequência Molecular , Monoterpenos/metabolismo , Família Multigênica , Oxilipinas/farmacologia , Proteínas de Plantas/metabolismo
8.
Plant Physiol ; 154(1): 67-77, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20605911

RESUMO

The trichomes of the wild tomato species Solanum habrochaites subsp. glabratum synthesize and store high levels of methylketones, primarily 2-tridecanone and 2-undecanone, that protect the plants against various herbivorous insects. Previously, we identified cDNAs encoding two proteins necessary for methylketone biosynthesis, designated methylketone synthase 1 (ShMKS1) and ShMKS2. Here, we report the isolation of genomic sequences encoding ShMKS1 and ShMKS2 as well as the homologous genes from the cultivated tomato, Solanum lycopersicum. We show that a full-length transcript of ShMKS2 encodes a protein that is localized in the plastids. By expressing ShMKS1 and ShMKS2 in Escherichia coli and analyzing the products formed, as well as by performing in vitro assays with both ShMKS1and ShMKS2, we conclude that ShMKS2 acts as a thioesterase hydrolyzing 3-ketoacyl-acyl carrier proteins (plastid-localized intermediates of fatty acid biosynthesis) to release 3-ketoacids and that ShMKS1 subsequently catalyzes the decarboxylation of these liberated 3-ketoacids, forming the methylketone products. Genes encoding proteins with high similarity to ShMKS2, a member of the "hot-dog fold" protein family that is known to include other thioesterases in nonplant organisms, are present in plant species outside the genus Solanum. We show that a related enzyme from Arabidopsis (Arabidopsis thaliana) also produces 3-ketoacids when recombinantly expressed in E. coli. Thus, the thioesterase activity of proteins in this family appears to be ancient. In contrast, the 3-ketoacid decarboxylase activity of ShMKS1, which belongs to the alpha/beta-hydrolase fold superfamily, appears to have emerged more recently, possibly within the genus Solanum.


Assuntos
Proteínas de Plantas/metabolismo , Solanum lycopersicum/enzimologia , Sequência de Aminoácidos , Carboxiliases/metabolismo , Ensaios Enzimáticos , Escherichia coli/metabolismo , Esterases/metabolismo , Genes de Plantas/genética , Proteínas de Fluorescência Verde/metabolismo , Cetonas/química , Cetonas/metabolismo , Solanum lycopersicum/genética , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Frações Subcelulares/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...