Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(46): 25411-25421, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37934629

RESUMO

We report the use of photocatalysis for the homolytic ring-opening of carbonyl cyclopropanes. In contrast to previous studies, our approach does not require a metal cocatalyst or a strong reductant. The carbonyl cyclopropanes can be employed for both [2σ + 2σ] and [2σ + 2π] annulation with either alkenes/alkynes or bicyclo[1.1.0]butanes, yielding cyclopent-anes/-enes and bicyclo[3.1.1]heptanes (BCHs), respectively. BCHs are promising bioisosteres for 1,2,4,5 tetra-substituted aromatic rings. Mechanistic studies, including density functional theory computation and a trapping experiment with DMPO, support a 1,3-biradical generated from cyclopropane as a key intermediate for these transformations.

2.
Chem Sci ; 13(43): 12831-12839, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36519037

RESUMO

We report the first oxidative C-H alkynylation of arylcyclopropanes. Irradiation of ethynylbenziodoxolone (EBX) reagents with visible light at 440 nm promoted the reaction. By the choice of the aryl group on the cyclopropane, it was possible to completely switch the outcome of the reaction from the alkynylation of the C-H bond to the oxyalkynylation of the C-C bond, which proceeded without the need for a catalyst, in contrast to previous works. The oxyalkynylation could also be extended to aminocyclopropanes as well as styrenes. Computations indicated that the C-H activation became a favoured nearly barrierless process in the presence of two ortho methyl groups on the benzene ring.

3.
Chem Soc Rev ; 51(17): 7344-7357, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35938356

RESUMO

Aminocyclopropanes are versatile building blocks for accessing high value-added nitrogen-containing products. To control ring-opening promoted by ring strain, the Lewis acid activation of donor-acceptor substituted systems is now well established. Over the last decade, alternative approaches have emerged proceeding via the formation of radical intermediates, alleviating the need for double activation of the cyclopropanes. This tutorial review summarizes key concepts and recent progress in ring-opening transformations of aminocyclopropanes via radical intermediates, divided into formal cycloadditions and 1,3-difunctionalizations.


Assuntos
Ciclopropanos , Ácidos de Lewis , Catálise , Reação de Cicloadição , Estrutura Molecular
4.
J Am Chem Soc ; 143(31): 11969-11975, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34339216

RESUMO

Diamines are essential building blocks for the synthesis of agrochemicals, drugs, and organic materials, yet their synthesis remains challenging, as both nitrogens need to be differentiated and diverse substitution patterns (1,2, 1,3, or 1,4) are required. We report herein a new strategy giving access to 1,2, 1,3, and 1,4 amido azides as orthogonally protected diamines based on the nitrogen-directed diazidation of alkenes, cyclopropanes, and cyclobutanes. Commercially available copper thiophene-2-carboxylate (CuTc, 2 mol %) as catalyst promoted the diazidation of both π and σ C-C bonds within 10 min in the presence of readily available oxidants and trimethylsilyl azide. Selective substitution of the formed α-amino azide by carbon nucleophiles (electron-rich aromatic, malonate, organosilicon, organoboron, organozinc, and organomagnesium compounds) was then achieved in a one-pot fashion, leading to the formation of 1,2-, 1,3-, and 1,4-diamines with the amino groups protected orthogonally as an amide/carbamate and an azide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...