Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39002022

RESUMO

PURPOSE: Neratinib, a small-molecule tyrosine kinase inhibitor (TKI) that irreversibly binds to human epidermal growth factor receptors 1, 2 and 4 (HER1/2/4), is an approved extended adjuvant therapy for patients with HER2-amplified or -overexpressed (HER2-positive) breast cancers. Patients receiving neratinib may experience mild-to-severe symptoms of gut toxicity including abdominal pain and diarrhoea. Despite being a highly prevalent complication in gut health, the biological processes underlying neratinib-induced gut injury, especially in the colon, remains unclear. METHODS: Real-time quantitative polymerase chain reaction (RT-qPCR) and histology were integrated to study the effect of, and type of cell death induced by neratinib on colonic tissues collected from female Albino Wistar rats dosed with neratinib (50 mg/kg) daily for 28 days. Additionally, previously published bulk RNA-sequencing and CRISPR-screening datasets on human glioblastoma SF268 cell line and glioblastoma T895 xenograft, and mouse TBCP1 breast cancer cell line were leveraged to elucidate potential mechanisms of neratinib-induced cell death. RESULTS: The severity of colonic epithelial injury, especially degeneration of surface lining colonocytes and infiltration of immune cells, was more pronounced in the distal colon than the proximal colon. Sequencing showed that apoptotic gene signature was enriched in neratinib-treated SF268 cells while ferroptotic gene signature was enriched in neratinib-treated TBCP1 cells and T895 xenograft. However, we found that ferroptosis, but less likely apoptosis, was a potential histopathological feature underlying colonic injury in rats treated with neratinib. CONCLUSION: Ferroptosis is a potential feature of neratinib-induced colonic injury and that targeting molecular machinery governing neratinib-induced ferroptosis may represent an attractive therapeutic approach to ameliorate symptoms of gut toxicity.

2.
Mol Cancer Ther ; : OF1-OF11, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853421

RESUMO

Most patients with lung squamous cell carcinoma (LSCC) undergo chemotherapy, radiotherapy, and adjuvant immunotherapy for locally advanced disease. The efficacy of these treatments is still limited because of dose-limiting toxicity or locoregional recurrence. New combination approaches and targets such as actionable oncogenic drivers are needed to advance treatment options for patients with LSCC. Moreover, other options for chemotherapy-ineligible patients are limited. As such, there is a critical need for the development of selective and potent chemoradiosensitizers for locally advanced LSCC. In this study, we investigated inhibiting TRAF2- and NCK-interacting protein kinase (TNIK), which is amplified in 40% of patients with LSCC, as a strategy to sensitize LSCC tumors to chemotherapy and radiotherapy. Employing a range of human LSCC cell lines and the TNIK inhibitor NCB-0846, we investigated the potential of TNIK as a chemo- and radiosensitizing target with in vitro and in vivo preclinical models. The combination of NCB-0846 with cisplatin or etoposide was at best additive. Interestingly, pre-treating LSCC cells with NCB-0846 prior to ionizing radiation (IR) potentiated the cytotoxicity of IR in a TNIK-specific fashion. Characterization of the radiosensitization mechanism suggested that TNIK inhibition may impair the DNA damage response and promote mitotic catastrophe in irradiated cells. In a subcutaneous xenograft in vivo model, pretreatment with NCB-0846 significantly enhanced the efficacy of IR and caused elevated necrosis in TNIKhigh LK2 tumors but not TNIKlow KNS62 tumors. Overall, these results indicate that TNIK inhibition may be a promising strategy to increase the efficacy of radiotherapy in patients with LSCC with high TNIK expression.

3.
Mol Cancer Ther ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38670554

RESUMO

Most patients with lung squamous cell carcinoma (LSCC) undergo chemotherapy, radiotherapy, and adjuvant immunotherapy for locally advanced disease. The efficacy of these treatments is still limited due to dose-limiting toxicity or locoregional recurrence. New combination approaches and targets such as actionable oncogenic drivers are needed to advance treatment options for LSCC patients. Moreover, other options for chemotherapy-ineligible patients are also limited. As such there is a critical need for the development of selective and potent chemoradiosensitizers for locally advanced LSCC. Here, we investigated inhibiting TRAF2 and NCK-interacting protein kinase (TNIK), which is amplified in 40% of LSCC patients, as a strategy to sensitize LSCC tumors to chemo- and radiotherapy. Employing a range of human LSCC cell lines and the TNIK inhibitor NCB-0846, we investigated the potential of TNIK as a chemo- and radiosensitizing target with in vitro and in vivo preclinical models. The combination of NCB-0846 with cisplatin or etoposide was at best additive. Interestingly, pre-treating LSCC cells with NCB-0846 prior to ionizing radiation (IR) potentiated the cytotoxicity of IR in a TNIK-specific fashion. Characterization of the radiosensitization mechanism suggested that TNIK inhibition may impair the DNA damage response and promote mitotic catastrophe in irradiated cells. In a subcutaneous xenograft in vivo model, pretreatment with NCB-0846 significantly enhanced the efficacy of IR and caused elevated necrosis in TNIKhigh LK2 tumors but not TNIKlow KNS62 tumors. Overall, these results indicate that TNIK inhibition may be a promising strategy to increase the efficacy of radiotherapy in LSCC patients with high TNIK expression.

4.
Prostate ; 84(1): 87-99, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37812042

RESUMO

PURPOSE: Despite well-informed work in several malignancies, the phenotypic effects of TP53 mutations in metastatic castration-sensitive prostate cancer (mCSPC) progression and metastasis are not clear. We characterized the structure-function and clinical impact of TP53 mutations in mCSPC. PATIENTS AND METHODS: We performed an international retrospective review of men with mCSPC who underwent next-generation sequencing and were stratified according to TP53 mutational status and metastatic burden. Clinical outcomes included radiographic progression-free survival (rPFS) and overall survival (OS) evaluated with Kaplan-Meier and multivariable Cox regression. We also utilized isogenic cancer cell lines to assess the effect of TP53 mutations and APR-246 treatment on migration, invasion, colony formation in vitro, and tumor growth in vivo. Preclinical experimental observations were compared using t-tests and ANOVA. RESULTS: Dominant-negative (DN) TP53 mutations were enriched in patients with synchronous (vs. metachronous) (20.7% vs. 6.3%, p < 0.01) and polymetastatic (vs. oligometastatic) (14.4% vs. 7.9%, p < 0.01) disease. On multivariable analysis, DN mutations were associated with worse rPFS (hazards ratio [HR] = 1.97, 95% confidence interval [CI]: 1.31-2.98) and overall survival [OS] (HR = 2.05, 95% CI: 1.14-3.68) compared to TP53 wild type (WT). In vitro, 22Rv1 TP53 R175H cells possessed stronger migration, invasion, colony formation ability, and cellular movement pathway enrichment in RNA sequencing analysis compared to 22Rv1 TP53 WT cells. Treatment with APR-246 reversed the effects of TP53 mutations in vitro and inhibited 22Rv1 TP53 R175H tumor growth in vivo in a dosage-dependent manner. CONCLUSIONS: DN TP53 mutations correlated with worse prognosis in prostate cancer patients and higher metastatic potential, which could be counteracted by APR-246 treatment suggesting a potential future therapeutic avenue.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Prognóstico , Intervalo Livre de Progressão , Mutação , Relação Estrutura-Atividade , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Proteína Supressora de Tumor p53/genética
5.
Mol Cancer Ther ; 22(4): 519-528, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36752776

RESUMO

Extra copies of centrosomes are frequently observed in cancer cells. To survive and proliferate, cancer cells have developed strategies to cluster extra-centrosomes to form bipolar mitotic spindles. The aim of this study was to investigate whether centrosome clustering (CC) inhibition (CCi) would preferentially radiosensitize non-small cell lung cancer (NSCLC). Griseofulvin (GF; FDA-approved treatment) inhibits CC, and combined with radiation treatment (RT), resulted in a significant increase in the number of NSCLC cells with multipolar spindles, and decreased cell viability and colony formation ability in vitro. In vivo, GF treatment was well tolerated by mice, and the combined therapy of GF and radiation treatment resulted in a significant tumor growth delay. Both GF and radiation treatment also induced the generation of micronuclei (MN) in vitro and in vivo and activated cyclic GMP-AMP synthase (cGAS) in NSCLC cells. A significant increase in downstream cGAS-STING pathway activation was seen after combination treatment in A549 radioresistant cells that was dependent on cGAS. In conclusion, GF increased radiation treatment efficacy in lung cancer preclinical models in vitro and in vivo. This effect may be associated with the generation of MN and the activation of cGAS. These data suggest that the combination therapy of CCi, radiation treatment, and immunotherapy could be a promising strategy to treat NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Griseofulvina/farmacologia , Griseofulvina/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/patologia , Centrossomo , Nucleotidiltransferases
6.
Methods Mol Biol ; 2343: 271-286, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34473330

RESUMO

Cancer is one of the most serious health problems in the world, which annually increases in incidence and mortality rates. Among therapies for cancer, chemical treatments are widespread. However, the benefit of these compounds remains limited due to high cytotoxicity, resistances, and non-selectivity. In addition to cancer, inflammation is also a common symptom and usually relates to other diseases such as infection and cancer. Therefore, investigation of new agents for anticancer and anti-inflammation is of high interest. The tropical climate of Vietnam makes it one of the most biodiversity-rich countries in the world, with a wide availability of traditional medicines and herbs for primary healthcare. However, most of utilization of Vietnamese medicinal plants is not evidence-based as few systematic studies of these have been performed. In this chapter, we present established anticancer and anti-inflammation assays for natural extract and compounds from a Vietnamese medicinal plant. In addition, the procedures of extraction, separation, and isolation of this plant are described.


Assuntos
Neoplasias , Plantas Medicinais , Anti-Inflamatórios/farmacologia , Antineoplásicos , Humanos , Medicina Tradicional , Neoplasias/tratamento farmacológico , Extratos Vegetais/farmacologia , Vietnã
7.
J Phys Chem A ; 120(34): 6880-7, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27523194

RESUMO

We apply our recently developed nonequilibrium real-time time-dependent density functional theory (OSCF2) to investigate the transient spectrum and relaxation dynamics of the tetragonal structure of methylammonium lead triiodide perovskite (MAPbI3). We obtain an estimate of the interband relaxation kinetics and identify multiple ultrafast cooling channels for hot electrons and hot holes that largely corroborate the dual valence-dual conduction model. The computed relaxation rates and absorption spectra are in good agreement with the existing experimental data. We present the first ab initio simulations of the perovskite transient absorption (TA) spectrum, substantiating the assignment of induced bleaches and absorptions including a Pauli-bleach signal. This paper validates both OSCF2 as a good qualitative model of electronic dynamics, and the dominant interpretation of the TA spectrum of this material.

8.
J Phys Chem Lett ; 7(8): 1590-5, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27064028

RESUMO

We introduce an atomistic, all-electron, black-box electronic structure code to simulate transient absorption (TA) spectra and apply it to simulate pyrazole and a GFP-chromophore derivative. The method is an application of OSCF2, our dissipative extension of time-dependent density functional theory. We compare our simulated spectra directly with recent ultrafast spectroscopic experiments. We identify features in the TA spectra to Pauli-blocking, which may be missed without a first-principles model. An important ingredient in this method is the stationary-TDDFT correction scheme recently put forward by Fischer, Govind, and Cramer that allows us to overcome a limitation of adiabatic TDDFT. We demonstrate that OSCF2 is able to reproduce the energies of bleaches and induced absorptions as well as the decay of the transient spectrum with only the molecular structure as input.

9.
J Chem Theory Comput ; 11(7): 2918-24, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26575729

RESUMO

We develop a new model to simulate nonradiative relaxation and dephasing by combining real-time Hartree-Fock and density functional theory (DFT) with our recent open-systems theory of electronic dynamics. The approach has some key advantages: it has been systematically derived and properly relaxes noninteracting electrons to a Fermi-Dirac distribution. This paper combines the new dissipation theory with an atomistic, all-electron quantum chemistry code and an atom-centered model of the thermal environment. The environment is represented nonempirically and is dependent on molecular structure in a nonlocal way. A production quality, O(N(3)) closed-shell implementation of our theory applicable to realistic molecular systems is presented, including timing information. This scaling implies that the added cost of our nonadiabatic relaxation model, time-dependent open self-consistent field at second order (OSCF2), is computationally inexpensive, relative to adiabatic propagation of real-time time-dependent Hartree-Fock (TDHF) or time-dependent density functional theory (TDDFT). Details of the implementation and numerical algorithm, including factorization and efficiency, are discussed. We demonstrate that OSCF2 approaches the stationary self-consistent field (SCF) ground state when the gap is large relative to k(b)T. The code is used to calculate linear-response spectra including the effects of bath dynamics. Finally, we show how our theory of finite-temperature relaxation can be used to correct ground-state DFT calculations.

10.
J Chem Phys ; 142(13): 134113, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25854234

RESUMO

It is important that any dynamics method approaches the correct population distribution at long times. In this paper, we derive a one-body reduced density matrix dynamics for electrons in energetic contact with a bath. We obtain a remarkable equation of motion which shows that in order to reach equilibrium properly, rates of electron transitions depend on the density matrix. Even though the bath drives the electrons towards a Boltzmann distribution, hole blocking factors in our equation of motion cause the electronic populations to relax to a Fermi-Dirac distribution. These factors are an old concept, but we show how they can be derived with a combination of time-dependent perturbation theory and the extended normal ordering of Mukherjee and Kutzelnigg for a general electronic state. The resulting non-equilibrium kinetic equations generalize the usual Redfield theory to many-electron systems, while ensuring that the orbital occupations remain between zero and one. In numerical applications of our equations, we show that relaxation rates of molecules are not constant because of the blocking effect. Other applications to model atomic chains are also presented which highlight the importance of treating both dephasing and relaxation. Finally, we show how the bath localizes the electron density matrix.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...