Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; : e2400163, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721965

RESUMO

In addressing the increasing demand for wearable sensing systems, the performance and lifespan of such devices must be improved by enhancing their sensitivity and healing capabilities. The present work introduces an innovative method for synthesizing a healable disulfide bond contained in a polydimethylsiloxane network (PDMS-SS) that incorporates ionic salts, which is designed to serve as a highly effective dielectric layer for capacitive tactile sensors. Within the polymer network structure, the cross-linking agent pentaerythritol tetrakis 3-mercaptopropionate (PTKPM) forms reversible disulfide bonds while simultaneously increasing polymer softness and the dielectric constant. The incorporation of dioctyl sulfosuccinate sodium salt (DOSS) significantly improves the capacitance and sensing properties by forming an electrical double-layer through interactions between the electrode charge and salt ions at the contact interface. The developed polymer material-based tactile sensor shows a strong response signal at low pressure (0.1 kPa) and maintains high sensitivity (0.175 kPa-1) over a wide pressure range (0.1-10 kPa). It also maintains the same sensitivity over 10 000 repeated applications of external pressure and is easily self-healed against mechanical deformation due to the dynamic disulfide covalent bonding, restoring ≈95% of its detection capacity.

2.
Micromachines (Basel) ; 14(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38004879

RESUMO

Nanofibers have gained much attention because of the large surface area they can provide. Thus, many fabrication methods that produce nanofiber materials have been proposed. Electrospinning is a spinning technique that can use an electric field to continuously and uniformly generate polymer and composite nanofibers. The structure of the electrospinning system can be modified, thus making changes to the structure, and also the alignment of nanofibers. Moreover, the nanofibers can also be treated, modifying the nanofiber structure. This paper thoroughly reviews the efforts to change the configuration of the electrospinning system and the effects of these configurations on the nanofibers. Excellent works in different fields of application that use electrospun nanofibers are also introduced. The studied materials functioned effectively in their application, thereby proving the potential for the future development of electrospinning nanofiber materials.

3.
Sensors (Basel) ; 22(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35009588

RESUMO

With the rapid development of society in recent decades, the wearable sensor has attracted attention for motion-based health care and artificial applications. However, there are still many limitations to applying them in real life, particularly the inconvenience that comes from their large size and non-flexible systems. To solve these problems, flexible small-sized sensors that use body motion as a stimulus are studied to directly collect more accurate and diverse signals. In particular, tactile sensors are applied directly on the skin and provide input signals of motion change for the flexible reading device. This review provides information about different types of tactile sensors and their working mechanisms that are piezoresistive, piezocapacitive, piezoelectric, and triboelectric. Moreover, this review presents not only the applications of the tactile sensor in motion sensing and health care monitoring, but also their contributions in the field of artificial intelligence in recent years. Other applications, such as human behavior studies, are also suggested.


Assuntos
Dispositivos Eletrônicos Vestíveis , Inteligência Artificial , Humanos , Movimento (Física) , Pele , Tato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...