Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Invertebr Pathol ; 206: 108164, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960029

RESUMO

This study aims to investigate how bioactivities of the coral surface mucus layer (SML) respond to changes in mucus-associated bacterial communities between bleached and healthy Porites lobata corals in Nha Trang Bay, Vietnam. The findings suggested that significant shifts in the mucus-associated bacterial communities were related to changes in coral health states from bleached to healthy P. lobata colonies (p < 0.05), while bacterial compositions were not significantly different across seasons and locations (p > 0.05). Of which 8 genera, Shewanella, Fusibacter, Halodesulfovibrio, Marinifilum, Endozoicomonas, Litoribacillus, Algicola, and Vibrio were present only in the SML of bleached coral while absent in the SML of the healthy one. As compared with the bleached SML, the healthy SML demonstrated stronger antibacterial activity against a coral bleaching pathogen, V. coralliilyticus, higher antitumor activity against HCT116 cell accompanied with increased induction of cleaved PARP and accelerated cell nucleic apoptosis and cycle arrest at S and G2/M phases exhibiting several typical characteristics, cell shrinkage, lost cell contact, and apoptotic body formation. Moreover, putative compounds detected at 280 nm in the healthy SML were obviously higher than those in the bleached one, probably they could be bioactive molecules responsible for competitively exclusion of pathogens, Algicola and Vibrio, from the healthy SML.

2.
Braz. arch. biol. technol ; 63: e20200082, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1132241

RESUMO

Abstract Fluorescent nanodiamond (FND) has been used for long-term cell labeling and in vivo cell tracking because they have good at photostability and biocompatibility. In this study, we evaluate the effect of fluorescent nanodiamond labeling on in vitro culture and differentiation of human umbilical cord mesenchymal stem cells (hUCMSCs) into hepatocyte-like cells (HLCs). For hepatic differentiation of hUCMSCs, cells were induced with human hepatocyte growth factor, nicotinamide and Dexamethasone. FND was supplied in two experimental groups with 20 μg/mL and 100 μg/mL in 2 hours. The cell was assessed for FND uptake by laser scan microscopy and flow cytometry methods. The effect of FND on hUCMSCs was evaluated by the cell viability and growth assays as well as the differentiation throughout of morphology alterations or gene expression of anfa-fetoprotein, albumin, and hepatocyte nuclear factor 4α. The results showed that the labeling of hUCMSCs is efficient and easy and there was significant cellular uptake of FND. We did not observe any negative impacts of FND to the cell viability and growth. FND can be utilized for the long-term labeling and tracking of hUCSCs and HLCs in vivo studies.


Assuntos
Humanos , Cordão Umbilical/citologia , Diferenciação Celular , Hepatócitos/citologia , Células-Tronco Mesenquimais/citologia , Sobrevivência Celular , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Sci Rep ; 9(1): 18746, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822705

RESUMO

Natural resources of the Mekong River are essential to livelihood of tens of millions of people. Previous studies highlighted that upstream hydro-infrastructure developments impact flow regime, sediment and nutrient transport, bed and bank stability, fish productivity, biodiversity and biology of the basin. Here, we show that tidal amplification and saline water intrusion in the Mekong Delta develop with alarming paces. While offshore M2 tidal amplitude increases by 1.2-2 mm yr-1 due to sea level rise, tidal amplitude within the delta is increasing by 2 cm yr-1 and salinity in the channels is increasing by 0.2-0.5 PSU yr-1. We relate these changes to 2-3 m bed level incisions in response to sediment starvation, caused by reduced upstream sediment supply and downstream sand mining, which seems to be four times more than previous estimates. The observed trends cannot be explained by deeper channels due to relative sea level rise; while climate change poses grave natural hazards in the coming decades, anthropogenic forces drive short-term trends that already outstrip climate change effects. Considering the detrimental trends identified, it is imperative that the Mekong basin governments converge to effective transboundary management of the natural resources, before irreversible damage is made to the Mekong and its population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...