Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38067669

RESUMO

This paper proposes a novel and reliable leak-detection method for pipeline systems based on acoustic emission (AE) signals. The proposed method analyzes signals from two AE sensors installed on the pipeline to detect leaks located between these two sensors. Firstly, the raw AE signals are preprocessed using empirical mode decomposition. The time difference of arrival (TDOA) is then extracted as a statistical feature of the two AE signals. The state of the pipeline (leakage/normal) is determined through comparing the statistical distribution of the TDOA of the current state with the prior normal state. Specifically, the two-sample Kolmogorov-Smirnov (K-S) test is applied to compare the statistical distribution of the TDOA feature for leak and non-leak scenarios. The K-S test statistic value in this context functions as a leakage indicator. A new criterion called leak sensitivity is introduced to evaluate and compare the performance of leak detection methods. Extensive experiments were conducted using an industrial pipeline system, and the results demonstrate the excellence of the proposed method in leak detection. Compared to traditional feature-based indicators, our approach achieves a significantly higher performance in leak detection.

2.
Sensors (Basel) ; 23(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38005477

RESUMO

In this paper, an approach to perform leak state detection and size identification for industrial fluid pipelines with an acoustic emission (AE) activity intensity index curve (AIIC), using b-value and a random forest (RF), is proposed. Initially, the b-value was calculated from pre-processed AE data, which was then utilized to construct AIICs. The AIIC presents a robust description of AE intensity, especially for detecting the leaking state, even with the complication of the multi-source problem of AE events (AEEs), in which there are other sources, rather than just leaking, contributing to the AE activity. In addition, it shows the capability to not just discriminate between normal and leaking states, but also to distinguish different leak sizes. To calculate the probability of a state change from normal condition to leakage, a changepoint detection method, using a Bayesian ensemble, was utilized. After the leak is detected, size identification is performed by feeding the AIIC to the RF. The experimental results were compared with two cutting-edge methods under different scenarios with various pressure levels and leak sizes, and the proposed method outperformed both the earlier algorithms in terms of accuracy.

3.
Sensors (Basel) ; 22(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35632097

RESUMO

This paper proposes a new technique for the construction of a concrete-beam health indicator based on the Kullback-Leibler divergence (KLD) and deep learning. Health indicator (HI) construction is a vital part of remaining useful lifetime (RUL) approaches for monitoring the health of concrete structures. Through the construction of a HI, the deterioration process can be processed and portrayed so that it can be forwarded to a prediction module for RUL prognosis. The degradation progression and failure can be identified by predicting the RUL based on the situation of the current specimen; as a result, maintenance can be planned to reduce safety risks, reduce financial costs, and prolong the specimen's useful lifetime. The portrayal of deterioration through HI construction from raw acoustic emission (AE) data is performed using a deep neural network (DNN), whose parameters are obtained by pretraining and fine tuning using a stack autoencoder (SAE). Kullback-Leibler divergence, which is calculated between a reference normal-conditioned signal and a current unknown signal, was used to represent the deterioration process of concrete structures, which has not been investigated for the concrete beams so far. The DNN-based constructor then learns to generate HI from raw data with KLD values as the training label. The HI construction result was evaluated with run-to-fail test data of concrete specimens with two measurements: fitness analysis of the construction result and RUL prognosis. The results confirm the reliability of KLD in portraying the deterioration process, showing a large improvement in comparison to other methods. In addition, this method requires no adept knowledge of the nature of the AE or the system fault, which is more favorable than model-based approaches where this level of expertise is compulsory. Furthermore, AE offers in-service monitoring, allowing the RUL prognosis task to be performed without disrupting the specimen's work.


Assuntos
Aprendizado Profundo , Redes Neurais de Computação , Prognóstico , Reprodutibilidade dos Testes , Projetos de Pesquisa
4.
Sensors (Basel) ; 23(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36616626

RESUMO

In this study, a scheme for leak localization on a cylinder tank bottom using acoustic emission (AE) is proposed. This approach provides a means of early failure detection, thus reducing financial damage and hazards to the environment and users. The scheme starts with the hit detection process using a constant false alarm rate (CFAR) and a fixed thresholding method for a time of arrival (TOA) and an end-time determination. The detected hits are then investigated to group those originating from the same AE source together by enforcing an event definition and a similarity score. Afterwards, these newly grouped hits are processed by a time difference of arrival (TDOA) to find the locations of the events. Since the locations of the events alone do not pinpoint the leak location, a data density analysis using a Voronoi diagram is employed to find the area with the highest possibility of a leak's existence. The proposed method was validated using the Hsu-Nielsen test on a cylinder tank bottom under a one-failed-sensor scenario, which returned a highly accurate result across multiple test locations.


Assuntos
Acústica
5.
Sensors (Basel) ; 21(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34833836

RESUMO

In this study, a scheme of remaining useful lifetime (RUL) prognosis from raw acoustic emission (AE) data is presented to predict the concrete structure's failure before its occurrence, thus possibly prolong its service life and minimizing the risk of accidental damage. The deterioration process is portrayed by the health indicator (HI), which is automatically constructed from raw AE data with a deep neural network pretrained and fine-tuned by a stacked autoencoder deep neural network (SAE-DNN). For the deep neural network structure to perform a more accurate construction of health indicator lines, a hit removal process with a one-class support vector machine (OC-SVM), which has not been investigated in previous studies, is proposed to extract only the hits which matter the most to the portrait of deterioration. The new set of hits is then harnessed as the training labels for the deep neural network. After the completion of the health indicator line construction, health indicators are forwarded to a long short-term memory recurrent neural network (LSTM-RNN) for the training and validation of the remaining useful life prediction, as this structure is capable of capturing the long-term dependencies, even with a limited set of data. Our prediction result shows a significant improvement in comparison with a similar scheme but without the hit removal process and other methods, such as the gated recurrent unit recurrent neural network (GRU-RNN) and the simple recurrent neural network.


Assuntos
Aprendizado Profundo , Acústica , Redes Neurais de Computação , Prognóstico , Máquina de Vetores de Suporte
6.
Sensors (Basel) ; 22(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35009719

RESUMO

This study proposes a fault diagnosis method (FD) for multistage centrifugal pumps (MCP) using informative ratio principal component analysis (Ir-PCA). To overcome the interference and background noise in the vibration signatures (VS) of the centrifugal pump, the fault diagnosis method selects the fault-specific frequency band (FSFB) in the first step. Statistical features in time, frequency, and wavelet domains were extracted from the fault-specific frequency band. In the second step, all of the extracted features were combined into a single feature vector called a multi-domain feature pool (MDFP). The multi-domain feature pool results in a larger dimension; furthermore, not all of the features are best for representing the centrifugal pump condition and can affect the condition classification accuracy of the classifier. To obtain discriminant features with low dimensions, this paper introduces a novel informative ratio principal component analysis in the third step. The technique first assesses the feature informativeness towards the fault by calculating the informative ratio between the feature within the class scatteredness and between-class distance. To obtain a discriminant set of features with reduced dimensions, principal component analysis was applied to the features with a high informative ratio. The combination of informative ratio-based feature assessment and principal component analysis forms the novel informative ratio principal component analysis. The new set of discriminant features obtained from the novel technique are then provided to the K-nearest neighbor (K-NN) condition classifier for multistage centrifugal pump condition classification. The proposed method outperformed existing state-of-the-art methods in terms of fault classification accuracy.


Assuntos
Algoritmos , Vibração , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...