Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38891635

RESUMO

Prion diseases are fatal neurodegenerative disorders characterized by an accumulation of misfolded prion protein (PrPSc) in brain tissues. The shadow of prion protein (Sho) encoded by the shadow of prion protein gene (SPRN) is involved in prion disease progress. The interaction between Sho and PrP accelerates the PrPSc conversion rate while the SPRN gene polymorphisms have been associated with prion disease susceptibility in several species. Until now, the SPRN gene has not been investigated in ducks. We identified the duck SPRN gene sequence and investigated the genetic polymorphisms of 184 Pekin ducks. We compared the duck SPRN nucleotide sequence and the duck Sho protein amino acid sequence with those of several other species. Finally, we predicted the duck Sho protein structure and the effects of non-synonymous single nucleotide polymorphisms (SNPs) using computational programs. We were the first to report the Pekin duck SPRN gene sequence. The duck Sho protein sequence showed 100% identity compared with the chicken Sho protein sequence. We found 27 novel SNPs in the duck SPRN gene. Four amino acid substitutions were predicted to affect the hydrogen bond distribution in the duck Sho protein structure. Although MutPred2 and SNPs&GO predicted that all non-synonymous polymorphisms were neutral or benign, SIFT predicted that four variants, A22T, G49D, A68T, and M105I, were deleterious. To the best of our knowledge, this is the first report about the genetic and structural characteristics of the duck SPRN gene.

2.
J Oral Biol Craniofac Res ; 13(5): 589-597, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576801

RESUMO

Objective: Stem cell therapy in periodontal tissue regeneration has reported optimistic regenerative results; evidence supporting its superiority over conventional methods is still ambiguous. Therefore, this meta-analysis aims to evaluate the therapeutic effects of stem cells in human periodontal regeneration. Design: A literature search was conducted to retrieve relevant articles on periodontal regeneration in stem cell therapy. A meta-analysis of the studies was conducted using the Stata software. Results: Fifteen studies that examined the effect of stem cell therapies on periodontal tissue regeneration in 369 patients were selected from databases. Regardless of the various types of cells, both odontogenic (periodontal ligament, dental pulp, gingiva stem cell) and non-odontogenic (bone marrow, periosteum-derived, and umbilical cord stem cells), the cell therapies witnessed significant improvements in terms of clinical attachment level (SMD, -0.67; 95CI, -0.90 to -0.43), probing depth (SMD, -0.76; 95% CI, -1.21 to - 0.31), radiographic intrabony defect depth (SMD, -0.87; 95% CI, -1.52 to -0.23), and histomorphometric analysis of mineralized bone (SMD, 0.80; 95% CI, 0.42 to 1.19) when compared to traditional without-cell treatment in patients. However, evidence on gingival recession, alveolar thickness gain, bone mineral density of bone core, and bone volume fraction of bone core outcomes did not reach statistical significance. Conclusions: Evidence suggests that the implementation of stem cell therapies in reconstructing compromised gingiva and alveolar bone tissue produces positive outcomes compared with conventional approaches. However, further well-designed investigations are needed to comprehensively identify the most effective source of cells and biomaterials for each case.

3.
Bioengineering (Basel) ; 10(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37370592

RESUMO

OBJECTIVES: Platelet-rich fibrin (PRF) and bone marrow mononuclear cells are potential scaffolds and cell sources for osteochondral regeneration. The main aim of this paper is to examine the effects of PRF scaffolds and autologous uncultured bone marrow mononuclear cells on osteochondral regeneration in rabbit knees. MATERIALS AND METHODS: Three different types of PRF scaffolds were generated from peripheral blood (Ch-PRF and L-PRF) and bone marrow combined with uncultured bone marrow mononuclear cells (BMM-PRF). The histological characteristics of these scaffolds were assessed via hematoxylin-eosin staining, PicroSirius red staining, and immunohistochemical staining. Osteochondral defects with a diameter of 3 mm and depth of 3 mm were created on the trochlear groove of the rabbit's femur. Different PRF scaffolds were then applied to treat the defects. A group of rabbits with induced osteochondral defects that were not treated with any scaffold was used as a control. Osteochondral tissue regeneration was assessed after 2, 4, and 6 weeks by macroscopy (using the Internal Cartilage Repair Society score, X-ray) and microscopy (hematoxylin-eosin stain, safranin O stain, toluidine stain, and Wakitani histological scale, immunohistochemistry), in addition to gene expression analysis of osteochondral markers. RESULTS: Ch-PRF had a heterogeneous fibrin network structure and cellular population; L-PRF and BMM-PRF had a homogeneous structure with a uniform distribution of the fibrin network. Ch-PRF and L-PRF contained a population of CD45-positive leukocytes embedded in the fibrin network, while mononuclear cells in the BMM-PRF scaffold were positive for the pluripotent stem cell-specific antibody Oct-4. In comparison to the untreated group, the rabbits that were given the autologous graft displayed significantly improved healing of the articular cartilage tissue and of the subchondral bone. Regeneration was gradually observed after 2, 4, and 6 weeks of PRF scaffold treatment, which was particularly evident in the BMM-PRF group. CONCLUSIONS: The combination of biomaterials with autologous platelet-rich fibrin and uncultured bone marrow mononuclear cells promoted osteochondral regeneration in a rabbit model more than platelet-rich fibrin material alone. Our results indicate that autologous platelet-rich fibrin scaffolds combined with uncultured bone marrow mononuclear cells applied in healing osteochondral lesions may represent a suitable treatment in addition to stem cell and biomaterial therapy.

4.
Bioresour Technol ; 343: 126091, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34624475

RESUMO

Co-culture using microalgae-activated sludge in Sequencing Batch Photobioreactors (PBRs) was investigated for wastewater treatment performance. This study evaluated the effect of natural and artificial lighting conditons on treatment performance under consideration of energy consumption. The results found that the removal of nutrients and COD of natural lighting condition was only 10% and 13% lower than those of artificial lighting respectively. Generally, artificial lighting mode took an advantage in pollutants removal. However, standing at 0.294 kWh L-1, the total energy consumption of natural lighting was over two times less than that of artificial lighting. It reveals the natural lighting system played a dominant role for cutting energy costs significantly compared to artificial lighting one (∼57%). As a practical viewpoint on energy aspect and treatment performance, a natural lighting PBR system would be a sustainable option for microalgae-activated sludge co-culture system treating wastewater.


Assuntos
Microalgas , Purificação da Água , Biomassa , Técnicas de Cocultura , Iluminação , Fotobiorreatores , Esgotos , Águas Residuárias
5.
Bioresour Technol ; 314: 123754, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32650264

RESUMO

In this study, mixed culture (microalgae:activated sludge) of a photobioreactor (PBR) were investigated at different inoculation ratios (1:0, 9:1, 3:1, 1:1, 0:1 wt/wt). This work was not only to determine the optimal ratio for pollutant remediation and biomass production but also to explore the role of microorganisms in the co-culture system. The results showed high total biomass concentrations were obtained from 1:0 and 3:1 ratio being values of 1.06, 1.12 g L-1, respectively. Microalgae played a dominant role in nitrogen removal via biological assimilation while activated sludge was responsible for improving COD removal. Compared with the single culture of microalgae, the symbiosis between microalgae and bacteria occurred at 3:1 and 1:1 ratio facilitated a higher COD removal by 37.5-45.7 %. In general, combined assessment based on treatment performance and biomass productivity facilitated to select an optimal ratio of 3:1 for the operation of the co-culture PBR.


Assuntos
Microalgas , Águas Residuárias , Biomassa , Técnicas de Cocultura , Nitrogênio/análise , Esgotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...