Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37887944

RESUMO

This paper reports the conversion of a waste to a conducting material, exploiting the ability to adsorb pollutant organic dyes. Leather waste was carbonized at 800 °C in an inert nitrogen atmosphere. The resulting biochar was used for in-situ deposition of polypyrrole nanotubes produced by the oxidative polymerization of pyrrole in the presence of methyl orange. The composites of carbonized leather with deposited polypyrrole nanotubes of various composition were compared with similar composites based on globular polypyrrole. Their molecular structure was characterized by infrared and Raman spectra. Both conducting components formed a bicontinuous structure. The resistivity was newly determined by a four-point van der Pauw method and monitored as a function of pressure applied up to 10 MPa. The typical conductivity of composites was of the order of 0.1 to 1 S cm-1 and it was always higher for polypyrrole nanotubes than for globular polypyrrole. The method also allows for the assessment of mechanical features, such as powder fluffiness. The conductivity decreased by 1-2 orders of magnitude after treatment with ammonia but still maintained a level acceptable for applications operating under non-acidic conditions. The composites were tested for dye adsorption, specifically cationic methylene blue and anionic methyl orange, using UV-vis spectroscopy. The composites were designed for future use as functional adsorbents controlled by the electrical potential or organic electrode materials.

2.
Polymers (Basel) ; 15(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36850311

RESUMO

The carbonization of collagen-based leather waste to nitrogen-containing carbon is reviewed with respect to the preparation, characterization of carbonized products, and applications proposed in the literature. The resulting nitrogen-containing carbons with fibrous morphology have been used as adsorbents in water pollution treatment, in electrocatalysis, and especially in electrodes of energy-storage devices, such as supercapacitors and batteries. Although electrical conductivity has been implicitly exploited in many cases, the quantitative determination of this parameter has been addressed in the literature only marginally. In this report, attention has been newly paid to the determination of conductivity and its dependence on carbonization temperature. The resulting powders cannot be compressed into pellets for routine conductivity determination. A new method has been used to follow the resistivity of powders as a function of pressure up to 10 MPa. The conductivity at this pressure increased from 9.4 × 10-8 S cm-1 for carbonization at 500 °C to 5.3 S cm-1 at 1000 °C. The conductivity of the last sample was comparable with conducting polymers such as polypyrrole. The carbonized leather thus has the potential to be used in applications requiring electrical conduction.

3.
Int J Biol Macromol ; 222(Pt A): 77-89, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36096252

RESUMO

In this study, ex-situ crosslinked gellan gum (GG)/bacterial cellulose (BC) hydrogels have been investigated as good absorbents for the removal of safranin and crystal violet dye pollutants. The preparation involves a cost-effective and easy-to-perform crosslinking procedure, using citric acid (CA) as a green crosslinker. The physicochemical and mechanical properties of the crosslinked hydrogels were examined by FTIR, TGA, SEM, XRD, and unconfined compression analyses. The swelling capacity of the hydrogels as a function of pH was investigated. CA depicted to improve structural stability as a crosslinker. The dye removal capacity of the hydrogels as good adsorbents was explored and showed higher efficiency in the removal of safranin dye as compared to crystal violet with optimum adsorption capacities obtained as 17.57 and 13.49 mg/g, respectively. Adsorption kinetics and isotherm models as well as thermodynamics examined. Results showed the adsorption process well fitted the pseudo 2nd-order kinetic and Langmuir-Freundlich models while temperature dependence study depicted to be exothermic. Furthermore, no significant loss of removal efficiency of the hydrogel adsorbent was observed even after five adsorption-desorption cycles. Based on the revealed results, the prepared hydrogel may serve as an effective adsorbent for the removal of dyes from the aqueous phase.


Assuntos
Violeta Genciana , Poluentes Químicos da Água , Violeta Genciana/química , Corantes/química , Hidrogéis/química , Celulose , Ácido Cítrico , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Adsorção , Carboximetilcelulose Sódica , Cinética
4.
Int J Pharm ; 607: 120952, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34329699

RESUMO

In this study, an antimicrobial mumio-based hydrogel dressing was developed for wound healing application. The mechanism of gel formation was achieved via a double crosslink network formation between gelatin (GT) and polyvinyl alcohol (PVA) using polyethylene glycol diglycidyl ether (PEGDE) and borax as crosslinking agents. To enhance the mechanical integrity of the hydrogel matrix, bacterial cellulose (BC) was integrated into the GT-PVA hydrogel to produce a composite gel dressing. The obtained hydrogel was characterized by FTIR, SEM, TGA, and XRD. Gel fraction, in vitro swelling and degradation as well as compressive modulus properties of the gel dressing were investigated as a function of change in PVA and BC ratios. By increasing the ratios of PVA and BC, the composite dressing showed lower swelling but higher mechanical strength. Comparing to other formulations, the gel with 4 %w/v PVA and 1 %w/v BC demonstrated to be most suitable in terms of stability and mechanical properties. In vitro cell cytotoxicity by MTT assay on human alveolar basal epithelial (A549) cell lines validated the gels as non-toxic. In addition, the mumio-based gel was compared to other formulations containing different bioactive agents of beeswax and cinnamon oil, which were tested for microbial growth inhibition effects against different bacteria (S. aureus and K. pneumoniae) and fungi (C. albicans and A. niger) strains. Results suggested that the gel dressing containing combinations of mumio, beeswax and cinnamon oil possess promising future in the inhibition of microbial infection supporting its application as a suitable dressing for wound healing.


Assuntos
Anti-Infecciosos , Hidrogéis , Antibacterianos/farmacologia , Bandagens , Humanos , Álcool de Polivinil , Staphylococcus aureus , Cicatrização
5.
Int J Biol Macromol ; 167: 1468-1478, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33212108

RESUMO

The design of improved biopolymeric based hydrogel materials with high load-capacity to serve as biocompatible drug carriers is a challenging task with vital implications in health sciences. In this work, chitosan crosslinked dialdehyde xanthan gum interpenetrated hydroxypropyl methylcellulose gels were developed for the controlled delivery of different antibiotic drugs including ampicillin, minocycline and rifampicin. The prepared hydrogel scaffolds were characterized by rheology method, FTIR, SEM, TGA and compression analysis. In addition, gelation kinetics, swelling, in vitro degradation and drug release rate were studied under simulated gastrointestinal fluid conditions of pH 2.0 and 7.4 at 37 °C. Results demonstrated the gel composition and structure affected drug release kinetics. The release study showed more than 50% cumulative release within 24 h for all investigated antibiotic drugs. In vitro cell cytocompatibility using mouse embryonic fibroblast cell lines depicted ≥80% cell viability, indicating the gels are non-toxic. Finally, the antibacterial activity of loaded gels was evaluated against Gram-negative and positive bacteria (Escherichia coli, Staphylococcus aureus and Klebsiella pneumonia), which correlated well with swelling and drug release results. Overall, the present study demonstrated that the produced hydrogel scaffolds serves as promising material for controlled antibiotic delivery towards microbial growth inhibition.


Assuntos
Antibacterianos/farmacologia , Quitosana/química , Portadores de Fármacos/química , Hidrogéis/química , Derivados da Hipromelose/química , Polissacarídeos Bacterianos/química , Ampicilina/farmacologia , Animais , Materiais Biocompatíveis/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Escherichia coli/efeitos dos fármacos , Fibroblastos , Hidrogéis/síntese química , Hidrogéis/farmacocinética , Hidrogéis/toxicidade , Concentração de Íons de Hidrogênio , Camundongos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Minociclina/farmacologia , Reologia , Rifampina/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Termogravimetria
6.
Mater Sci Eng C Mater Biol Appl ; 109: 110621, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32228903

RESUMO

The current study explores the facile fabrication of multilayer self-assembled electrostatic oil-in-water Pickering emulsions (PEs) using quaternized nanocellulose (Q-NC) and diosgenin-conjugate alginate (DGN-ALG) particles as stabilizers to form hydrocolloid nanocarriers. The conditions of formulation such as storage time, pH, temperature and salt effect on the emulsion stability were evaluated. The results deduced showed good emulsion droplet stability over a period of 30 days. Morphological analysis revealed the hydrodynamic sizes of the PE droplets to be spherically shaped with an average diameter of 150 ± 3.51 nm. Creaming index, wettability and critical aggregation concentrations (CAC) as well as chemical characterization of the PEs were examined. In vitro release kinetics of encapsulated quinalizarin as a model drug was investigated with a determined cumulative drug release (CDR) of 89 ± 1.21% in simulated pH blood medium of pH 7.4. In addition, cellular internalization of the PEs was studied via confocal microscopy imaging and showed high cellular uptake. Also, evaluated in vitro cytotoxicity by MTT assay demonstrated excellent anticancer activity in human lung (A549) and breast (MCF-7) cancer cell lines.


Assuntos
Alginatos , Antraquinonas , Neoplasias da Mama/tratamento farmacológico , Celulose , Diosgenina , Sistemas de Liberação de Medicamentos , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Alginatos/química , Alginatos/farmacocinética , Alginatos/farmacologia , Antraquinonas/química , Antraquinonas/farmacocinética , Antraquinonas/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Celulose/química , Celulose/farmacocinética , Celulose/farmacologia , Diosgenina/química , Diosgenina/farmacocinética , Diosgenina/farmacologia , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Células MCF-7
7.
Int J Biol Macromol ; 114: 536-546, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29601877

RESUMO

In the present study, nanocrystalline cellulose (NCC) was prepared via acid hydrolysis and synthesis parameters were optimized via response surface modelling with a determined maximum NCC yield of 43.8%. The optimized NCC sample was subsequently surface modified via epichlorohydrin-mediated amination forming aminated nanocrystalline cellulose (A-NCC) with an amine content calculated as 1500µmol/g. The average particle size and zeta potential were determined 100nm and 325nm for NCC and A-NCC, respectively. Structural properties were analyzed by FTIR, TEM and XRD techniques. The obtained A-NCC as final product depicted a pKa value of 10.86±0.07 demonstrating favourable protonation of amine groups at physiological pH allowing the material to be suitable for prospective application in drug delivery and tissue engineering.


Assuntos
Celulose/química , Nanopartículas/química , Aminação , Sistemas de Liberação de Medicamentos/métodos , Concentração de Íons de Hidrogênio , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...