Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35009090

RESUMO

Okra is an important crop species for smallholder farmers in many tropical and subtropical regions of the world. Its interaction with mycorrhiza has been rarely studied, and little is known about its mycorrhizal dependency, especially under drought stress. In a glasshouse experiment, we investigated the effect of Arbuscular Mycorrhiza Fungi (AMF) inoculation on growth, evapotranspiration, mineral nutrition and root morphology of five okra cultivars under ample water and drought stress conditions. 'Khartoumia', 'HSD6719', 'HSD7058', 'Sarah' and 'Clemson Spineless'-cultivars commonly used by farmers in Sudan were chosen for their geographical, morphological and breeding background variations. The plants were either inoculated with R. irregulare or mock-inoculated. Seven weeks after seeding, the soil-water content was either maintained at 20% w/w or reduced to 10% w/w to impose drought stress. Drought stress resulted in plant P deficiency and decreased shoot dry biomass (DB), especially in HSD7058 and Clemson Spineless (69% and 56% decrease in shoot DB, in the respective cultivars). Plant inoculation with AMF greatly enhanced the shoot total content of P and the total DB in all treatments. The mycorrhizal dependency (MD)-the degree of total plant DB change associated with AM colonization-differed among the cultivars, irrespective of the irrigation treatment. Key determinants of MD were the root phenotype traits. Khartoumia (with the highest MD) had the lowest root DB, root-to-shoot ratio, and specific root length (SRL). Meanwhile, HSD6719 (with the lowest MD) had the highest respective root traits. Moreover, our data suggest a relationship between breeding background and MD. The improved cultivar Khartoumia showed the highest MD compared with the wild-type Sarah and the HSD7058 and HSD6719 landraces (higher MD by 46%, 17% and 32%, respectively). Interestingly, the drought-affected HSD7058 and Clemson Spineless exhibited higher MD (by 27% and 15%, respectively) under water-deficiency compared to ample water conditions. In conclusion, the mediation of drought stress in the okra plant species by AMF inoculation is cultivar dependent. The presence of AMF propagules in the field soil might be important for increasing yield production of high MD and drought susceptible cultivars, especially under drought/low P environments.

2.
Nutrients ; 10(11)2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30400138

RESUMO

The present human intervention trial investigated the health-promoting potential of B. carinata, with a focus on effects of thermal processing on bioactivity. Twenty-two healthy subjects consumed a B. carinata preparation from raw (allyl isothiocyanate-containing) or cooked (no allyl isothiocyanate) leaves for five days in a randomized crossover design. Peripheral blood mononuclear cells were exposed to aflatoxin B1 (AFB1), with or without metabolic activation using human S9 mix, and subsequently analyzed for DNA damage using the comet assay. Plasma was analyzed for total antioxidant capacity and prostaglandin E2 (PGE2) levels. Cooked B. carinata significantly reduced DNA damage induced by AFB1 as compared to baseline levels (+S9 mix: 35%, -S9 mix: 33%, p ≤ 0.01, respectively). Raw B. carinata only reduced DNA damage by S9-activated AFB1 by 21% (p = 0.08). PGE2 plasma levels were significantly reduced in subjects after consuming raw B. carinata. No changes in plasma antioxidant capacity were detectable. A balanced diet, including raw and cooked Brassica vegetables, might be suited to fully exploit the health-promoting potential. These results also advocate the promotion of B. carinata cultivation in Eastern Africa as a measure to combat effects of unavoidable aflatoxin exposure.


Assuntos
Brassica/química , Culinária , Verduras , Adulto , Antioxidantes/metabolismo , Estudos Cross-Over , Dieta , Feminino , Análise de Alimentos , Humanos , Isotiocianatos/sangue , Isotiocianatos/metabolismo , Isotiocianatos/urina , Leucócitos Mononucleares , Masculino , Adulto Jovem
3.
Nutrients ; 10(10)2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30336641

RESUMO

Plant cultivation and processing may impact nutrient and phytochemical content of vegetables. The present study aimed at determining the influence of cultivation and processing on the health promoting capacity of African nightshade (Solanum scabrum Mill.) leaves, an indigenous vegetable, rich in nutrients and phytochemicals. Anti-genotoxicity against the human liver carcinogen aflatoxin B1 (AFB1) as determined by the comet assay and radical oxygen species (ROS) scavenging capacity of ethanolic and aqueous extracts were investigated in human derived liver (HepG2) cells. ROS scavenging activity was assessed using electron paramagnetic spin resonance and quantification of ARE/Nrf2 mediated gene expression. The cultivation was done under different environmental conditions. The processing included fermentation and cooking; postharvest ultraviolet irradiation (UV-C) treatment was also investigated. Overall, S. scabrum extracts showed strong health promoting potential, the highest potential was observed with the fermented extract, which showed a 60% reduction of AFB1 induced DNA damage and a 38% reduction in FeSO4 induced oxidative stress. The content of total polyphenols, carotenoids and chlorophylls was indeed affected by cultivation and processing. Based on the present in vitro findings consumption of S. scabrum leaves could be further encouraged, preferentially after cooking or fermentation of the plant.


Assuntos
Agricultura , Dano ao DNA/efeitos dos fármacos , Composição de Medicamentos/métodos , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Solanum/química , Aflatoxina B1 , Anticarcinógenos/farmacologia , Antioxidantes/farmacologia , Carotenoides/farmacologia , Clorofila/farmacologia , Culinária , Meio Ambiente , Fermentação , Células Hep G2 , Humanos , Fígado/citologia , Folhas de Planta , Polifenóis/farmacologia , Solanum/crescimento & desenvolvimento , Raios Ultravioleta
4.
Food Res Int ; 100(Pt 3): 411-422, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28964364

RESUMO

Indigenous African leafy vegetables vary enormously in their secondary plant metabolites whereat genus and the species have a great impact. In African nightshade (Solanum scabrum), spiderplant (Cleome gynandra), amaranth (Amaranthus cruentus), cowpea (Vigna unguiculata), Ethiopian kale (Brassica carinata) and common kale (Brassica oleracea) the specific secondary metabolite profile was elucidated and gained detailed data about carotenoids, chlorophylls, glucosinolates and phenolic compounds all having an appropriate contribution to health beneficial properties of indigenous African leafy vegetables. Exemplarily, various quercetin glycosides such as quercetin-3-rutinoside occur in high concentrations in African nightshade, spiderplant, and amaranth between ~1400-3300µg/g DW. Additionally the extraordinary hydroxycinnamic acid derivatives such as glucaric isomers and isocitric acid isomers are found especially in amaranth (up to ~1250µg/g DW) and spiderplant (up to 120µg/g DW). Carotenoids concentrations are high in amaranth (up to101.7µg/g DW) and spiderplants (up to 64.7µg/g DW) showing high concentrations of ß-carotene, the pro-vitamin A. In contrast to the ubiquitous occurring phenolics and carotenoids, glucosinolates are only present in the Brassicales species Ethiopian kale, common kale and spiderplant characterized by diverse glucosinolate profiles. Generally, the consumption of a variety of these indigenous African leafy vegetables can be recommended to contribute to different benefits such as antioxidant activity, increase pro-vitamin A and anticancerogenic compounds in a healthy diet.


Assuntos
Antioxidantes/metabolismo , Ácidos Cumáricos/metabolismo , Glicosídeos/metabolismo , Fenóis/metabolismo , Folhas de Planta/química , Verduras/metabolismo , Vitamina A/metabolismo , África Oriental , Amaranthus/química , Amaranthus/metabolismo , Antioxidantes/análise , Antioxidantes/química , Brassica/química , Brassica/metabolismo , Carotenoides/análise , Carotenoides/química , Carotenoides/metabolismo , Cromatografia Líquida de Alta Pressão , Cleome/química , Cleome/metabolismo , Ácidos Cumáricos/análise , Ácidos Cumáricos/química , Glucosinolatos/análise , Glucosinolatos/química , Glicosídeos/análise , Glicosídeos/química , Fenóis/análise , Fenóis/química , Quercetina/análise , Quercetina/química , Quercetina/metabolismo , Solanum/química , Solanum/metabolismo , Verduras/química , Vigna/química , Vigna/metabolismo , Vitamina A/análise , Vitamina A/química
5.
Front Plant Sci ; 8: 1700, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29033969

RESUMO

Intercropping is widespread in small-holder farming systems in tropical regions and is also practiced in the cultivation of indigenous vegetables, to alleviate the multiple burdens of malnutrition. Due to interspecific competition and/or complementation between intercrops, intercropping may lead to changes in plants accumulation of minerals and secondary metabolites and hence, alter nutritional quality for consumers. Intercropping aims to intensify land productivity, while ensuring that nutritional quality is not compromised. This study aimed to investigate changes in minerals and secondary plant metabolites in intercropped Brassica carinata and Solanum scabrum, two important African indigenous vegetables, and evaluated the suitability of this combination for dryer areas. B. carinata and S. scabrum were grown for 6 weeks under controlled conditions in a greenhouse trial. Large rootboxes (8000 cm3 volume) were specifically designed for this experiment. Each rootbox was planted with two plants, either of the same plant species (mono) or one of each plant species (mixed). A quartz sand/soil substrate was used and fertilized adequately for optimal plant growth. During the last 4 weeks of the experiment, the plants were either supplied with optimal (65% WHC) or low (30% WHC) irrigation, to test the effect of a late-season drought. Intercropping increased total glucosinolate content in B. carinata, while maintaining biomass production and the contents of other health related minerals in both B. carinata and S. scabrum. Moreover, low irrigation led to an increase in carotene accumulation in both mono and intercropped S. scabrum, but not in B. carinata, while the majority of kaempferol glycosides and hydroxycinnamic acid derivatives of both species were decreased by intercropping and drought treatment. This study indicates that some health-related phytochemicals can be modified by intercropping or late-season drought, but field validation of these results is necessary before definite recommendation can be made to stakeholders.

6.
Food Nutr Res ; 61(1): 1271527, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28326001

RESUMO

Background: Ethiopian kale (Brassica carinata) is a horticulturally important crop used as leafy vegetable in large parts of East and Southern Africa. The leaves are reported to contain high concentrations of health-promoting secondary plant metabolites. However, scientific knowledge on their health benefits is scarce. Objective: This study aimed to determine the cancer preventive potential of B. carinata using a human liver in vitro model focusing on processing effects on the pattern of secondary plant metabolites and bioactivity. Design: B. carinata was cultivated under controlled conditions and differentially processed (raw, fermented, or cooked) after harvesting. Human liver cancer cells (HepG2) were treated with ethanolic extracts of raw or processed B. carinata leaves and analyzed for their anti-genotoxic, anti-oxidant, and cytostatic potential. Chemical analyses were carried out on glucosinolates including breakdown products, phenolic compounds, carotenoids, and chlorophyll content. Results: Pre-treatment with B. carinata extracts concentration dependently reduced aflatoxin-induced DNA damage in the Comet assay, reduced the production of reactive oxygen species as determined by electron paramagnetic resonance spectroscopy, and induced Nrf2-mediated gene expression. Increasing extract concentrations also promoted cytostasis. Processing had a significant effect on the content of secondary plant metabolites. However, different processing methodologies did not dramatically decrease bioactivity, but enhanced the protective effect in some of the endpoints studied. Conclusion: Our findings highlight the cancer preventive potential of B. carinata as indicated by the protection of human liver cells against aflatoxin in vitro. In general, consumption of B. carinata should be encouraged as part of chemopreventive measures to combat prevalence of aflatoxin-induced diseases.

7.
Mycorrhiza ; 27(3): 201-210, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27838855

RESUMO

The formation of storage organs, such as spores and vesicles, is a central part of the life cycle of an arbuscular mycorrhizal fungus (AMF), but the conditions under which this occurs in AMF are not well understood. Here, quantity and distribution of storage organs formed by the arbuscular mycorrhizal fungus (AMF) Funneliformis mosseae within dead (excised) roots were characterised. 'Trap roots' (TR), separated from the growth substrate by a 30-µm mesh, supported hyphal growth and formation of storage organs of the AMF. Hyphae developed both inside and on the outside of the TR and also within air gaps of surrounding nylon mesh compartments, but formation of vesicles and spores was confined to the interior and to the surface of the TR. Up to 20 % of the TR length harboured newly formed storage organs, resulting in a number of about 60 per mg TR dry weight. The portion of TR length containing storage organs was greater in coarse (diameter >300 µm) than in thin (<150 µm) TR, irrespective of whether the TR were sourced from an AMF host or non-host plant. We conclude that the AMF's extraradical mycelium produces its storage organs within dead roots in preference to air space in the substrate. Dead roots may indirectly supply nutrients to AMF (once they have been mineralised) or represent a protected space for the fungal structures to develop. The experimental technique described here allows for the preparation of AMF spores and vesicles of F. mosseae free of any mineral substrate.


Assuntos
Micorrizas/metabolismo , Esporos Fúngicos/metabolismo , Zea mays/microbiologia , Hifas/crescimento & desenvolvimento , Micélio/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Microbiologia do Solo , Simbiose
8.
Food Chem ; 152: 190-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24444925

RESUMO

The decrease of water availability is leading to an urgent demand to reduce the plants' water supply. This study evaluates the effect of topsoil drying, combined with varying sulfur (S) supply on glucosinolates in Brassica juncea in order to reveal whether a partial root drying may already lead to a drought-induced glucosinolate increase promoted by an enhanced S supply. Without decreasing biomass, topsoil drying initiated an increase in aliphatic glucosinolates in leaves and in topsoil dried roots supported by increased S supply. Simultaneously, abscisic acid was determined, particularly in dehydrated roots, associated with an increased abscisic acid concentration in leaves under topsoil drying. This indicates that the dehydrated roots were the direct interface for the plants' stress response and that the drought-induced accumulation of aliphatic glucosinolates is related to abscisic acid formation. Indole and aromatic glucosinolates decreased, suggesting that these glucosinolates are less involved in the plants' response to drought.


Assuntos
Glucosinolatos/metabolismo , Mostardeira/química , Folhas de Planta/química , Raízes de Plantas/química , Solo/química , Enxofre/metabolismo , Glucosinolatos/análise , Mostardeira/crescimento & desenvolvimento , Mostardeira/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Enxofre/análise
9.
Mycorrhiza ; 24(5): 361-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24322505

RESUMO

The present study was undertaken to evaluate the effects of phosphorus (P) application and arbuscular mycorrhizal (AM) fungi (Funneliformis mosseae) on growth, foliar nitrogen mobilization, and phosphorus partitioning in cowpea (Vigna unguiculata cv. Vita-5) plants. The experiment was conducted in a greenhouse in pots containing a mixture of vermiculite and sterilized quartz sand. Mycorrhizal and non-mycorrhizal cowpea plants were supplied with three levels of soluble P (0.1 (low P), 0.5 (medium P), or 1.0 mM (high P)).Cowpea plants supplied with low P fertilization showed significantly (p < 0.05) higher root colonization than those with medium and high P fertilization at both the vegetative and pod-filling stages. P uptake and growth parameters of cowpea plants were positively influenced by mycorrhizal inoculation only in the medium P fertilization treatment at the vegetative stage. Lack of these effects in the other treatments may be linked to either a very low P supply (in the low P treatment at the vegetative stage) or the availability of optimal levels of freely diffusible P in the substrate towards the pod-filling stage due to accumulation with time. The N concentration in leaves of all cowpea plants were lower at the pod-filling stage than at the vegetative stage, presumably as a result of N mobilization from vegetative organs to the developing pods. This was however not influenced by AM fungal inoculation and may be a consequence of the lack of an improved plant P acquisition by the fungus at the pod-filling stage.


Assuntos
Fabaceae/microbiologia , Fabaceae/fisiologia , Micorrizas/fisiologia , Nitrogênio/metabolismo , Fósforo/metabolismo , Folhas de Planta/metabolismo
10.
Mycorrhiza ; 23(2): 107-17, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22810583

RESUMO

Labeled nitrogen ((15)N) was applied to a soil-based substrate in order to study the uptake of N by Glomus intraradices extraradical mycelium (ERM) from different mineral N (NO(3)(-) vs. NH(4)(+)) sources and the subsequent transfer to cowpea plants. Fungal compartments (FCs) were placed within the plant growth substrate to simulate soil patches containing root-inaccessible, but mycorrhiza-accessible, N. The fungus was able to take up both N-forms, NO(3)(-) and NH(4)(+). However, the amount of N transferred from the FC to the plant was higher when NO(3)(-) was applied to the FC. In contrast, analysis of ERM harvested from the FC showed a higher (15)N enrichment when the FC was supplied with (15)NH(4)(+) compared with (15)NO(3)(-). The (15)N shoot/root ratio of plants supplied with (15)NO(3)(-) was much higher than that of plants supplied with (15)NH(4)(+), indicative of a faster transfer of (15)NO(3)(-) from the root to the shoot and a higher accumulation of (15)NH (4)(+) in the root and/or intraradical mycelium. It is concluded that hyphae of the arbuscular mycorrhizal fungus may absorb NH(4)(+) preferentially over NO(3)(-) but that export of N from the hyphae to the root and shoot may be greater following NO(3)(-) uptake. The need for NH(4)(+) to be assimilated into organically bound N prior to transport into the plant is discussed.


Assuntos
Amônia/metabolismo , Fabaceae/microbiologia , Glomeromycota/fisiologia , Micorrizas/fisiologia , Nitratos/metabolismo , Nitrogênio/metabolismo , Simbiose , Fabaceae/metabolismo , Glomeromycota/metabolismo , Micélio/metabolismo , Micorrizas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...