Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 28(39): 55102-55115, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34128170

RESUMO

Cynara cardunculus L. is a multipurpose crop, characterized by high production of biomass suitable for energy purposes and green chemistry. Taking advantage of its already demonstrated ability to grow in polluted environments that characterize many world marginal lands, the aim of this work was to investigate the response of different cardoon genotypes to exposure to cadmium (Cd) and arsenic (As) pollution, in order to use this crop for rehabilitation of contaminated sites and its biomass for energy production. In this study, seeds of two wild cardoon accessions harvested in rural and industrial Sicilian areas and of a selected line of domestic cardoon were used, and the grown plants were spiked with As and Cd, alone or in combination, at two different concentrations (500 and 2000 µM) and monitored for 45 days. The growth parameters showed that all the plants survived until the end of experiment, with growth stimulation in the presence of low concentrations of As and Cd, relative to metal-free controls. Biomass production was mostly allocated in the roots in As treatment and in the shoots in Cd treatment. Cd EXAFS analysis showed that tolerance to high concentrations of both metals was likely linked to complexation of Cd with oxygen-containing ligands, possibly organic acids, in both root and leaf biomass with differences in behaviour among genotypes. Under As+Cd contamination, the ability of the plants to translocate As to aboveground system increased also showing that, for both metal(loid)s, there were significant differences between genotypes studied. Moreover, the results showed that Cynara cardunculus var. sylvestris collected in an industrial area is the genotype that, among those studied, had the best phytoextraction capability for each metal(loid).


Assuntos
Arsênio , Cynara , Biodegradação Ambiental , Cádmio , Genótipo
2.
Sci Total Environ ; 784: 147087, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-33894606

RESUMO

This study provides a novel insight into the degradation of sediment organic matter (SOM) regulated by algae-derived organic matter (AOM) based on priming effect. We tracked the dynamics of SOM mineralization products and pathways, together with priming effects (PE) using the compound-specific stable isotope (δ13C) technique following addition of low- and high-density algal debris in sediments. We found that algal debris increased the total carbon oxidation rate, and resulted in denitrification and methanogenesis-dominated SOM mineralization. While iron reduction and sulphate reduction played important roles in the early period of algal accumulation. Total carbon oxidation rate and anaerobic rates (Ranaerobic) were higher in the amended treatments compared with that in the control. Analysis indicated that algal debris had a positive PE on SOM mineralization, which caused an intensified mineralization in the initial phase with over 80% of dissolved inorganic carbon deriving from SOM degradation. Total carbon oxidation rate of SOM deduced from priming effect (RTCOR-PE) was similar to Ranaerobic, further indicating SOM mineralization was a critical source of the end products. These findings deviate the causal focus from the decomposition of AOM, and confirm the accumulation of AOM as the facilitator of SOM mineralization. Our study offers empirical evidences to advance the traditional view on the effect of AOM on SOM mineralization.


Assuntos
Eutrofização , Solo , Carbono , Água Doce
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...