Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 37(4): 707-716, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28153882

RESUMO

OBJECTIVE: Systemic lupus erythematosus (SLE) is associated with the premature development of cardiovascular disease. The platelet-endothelium interaction is important in the pathogenesis of cardiovascular disease. In this study, we investigated the platelet phenotype from patients with SLE and matched controls, and their effect on endothelial cells. APPROACH AND RESULTS: Platelet aggregability was measured in 54 SLE subjects off antiplatelet therapy (mean age 40.1±12.8 years; 82% female; 37% white) with age- and sex-matched controls. Platelets were coincubated with human umbilical vein endothelial cells (HUVECs) and changes to gene expression assessed by an RNA array and quantitative reverse transcription polymerase chain reaction. SLE disease activity index ranged from 0 to 22 (mean 5.1±3.9). Compared with controls, patients with SLE had significantly increased monocyte and leukocyte-platelet aggregation and platelet aggregation in response to submaximal agonist stimulation. An agnostic microarray of HUVECs cocultured with SLE platelets found a platelet-mediated effect on endothelial gene pathways involved in cell activation. Sera from SLE versus control subjects significantly increased (1) activation of control platelets; (2) platelet adhesion to HUVECs; (3) platelet-induced HUVEC gene expression of interleukin-8, and intercellular adhesion molecule 1; and (4) proinflammatory gene expression in HUVECs, mediated by interleukin-1ß-dependent pathway. Incubation of SLE-activated platelets with an interleukin-1ß-neutralizing antibody or HUVECs pretreated with interleukin-1 receptor antibodies attenuated the platelet-mediated activation of endothelial cells. CONCLUSIONS: Platelet activity measurements and subsequent interleukin-1ß-dependent activation of the endothelium are increased in subjects with SLE. Platelet-endothelial interactions may play a role in the pathogenesis of cardiovascular disease in patients with SLE.


Assuntos
Plaquetas/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Interleucina-1beta/sangue , Lúpus Eritematoso Sistêmico/sangue , Ativação Plaquetária , Adulto , Anticorpos Neutralizantes/farmacologia , Plaquetas/efeitos dos fármacos , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/genética , Lúpus Eritematoso Sistêmico/genética , Masculino , Pessoa de Meia-Idade , Fenótipo , Ativação Plaquetária/efeitos dos fármacos , Adesividade Plaquetária , Agregação Plaquetária , Testes de Função Plaquetária , Receptores de Interleucina-1/antagonistas & inibidores , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Transdução de Sinais , Adulto Jovem
2.
Cancer Res ; 75(1): 40-50, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25388284

RESUMO

Vascular tumors are endothelial cell neoplasms whose mechanisms of tumorigenesis are poorly understood. Moreover, current therapies, particularly those for malignant lesions, have little beneficial effect on clinical outcomes. In this study, we show that endothelial activation of the Akt1 kinase is sufficient to drive de novo tumor formation. Mechanistic investigations uncovered opposing functions for different Akt isoforms in this regulation, where Akt1 promotes and Akt3 inhibits vascular tumor growth. Akt3 exerted negative effects on tumor endothelial cell growth and migration by inhibiting activation of the translation regulatory kinase S6-Kinase (S6K) through modulation of Rictor expression. S6K in turn acted through a negative feedback loop to restrain Akt3 expression. Conversely, S6K signaling was increased in vascular tumor cells where Akt3 was silenced, and the growth of these tumor cells was inhibited by a novel S6K inhibitor. Overall, our findings offer a preclinical proof of concept for the therapeutic utility of treating vascular tumors, such as angiosarcomas, with S6K inhibitors.


Assuntos
Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Vasculares/enzimologia , Neoplasias Vasculares/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Fosforilação
3.
Mol Biol Cell ; 21(13): 2327-37, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20444975

RESUMO

Protein kinase D (PKD) plays a critical role at the trans-Golgi network by regulating the fission of transport carriers destined for the plasma membrane. Two known Golgi-localized PKD substrates, PI4-kinase IIIbeta and the ceramide transfer protein CERT, mediate PKD signaling to influence vesicle trafficking to the plasma membrane and sphingomyelin synthesis, respectively. PKD is recruited and activated at the Golgi through interaction with diacylglycerol, a pool of which is generated as a by-product of sphingomyelin synthesis from ceramide. Here we identify a novel substrate of PKD at the Golgi, the oxysterol-binding protein OSBP. Using a substrate-directed phospho-specific antibody that recognizes the optimal PKD consensus motif, we show that PKD phosphorylates OSBP at Ser240 in vitro and in cells. We further show that OSBP phosphorylation occurs at the Golgi. Phosphorylation of OSBP by PKD does not modulate dimerization, sterol binding, or affinity for PI(4)P. Instead, phosphorylation attenuates OSBP Golgi localization in response to 25-hydroxycholesterol and cholesterol depletion, impairs CERT Golgi localization, and promotes Golgi fragmentation.


Assuntos
Complexo de Golgi/metabolismo , Proteína Quinase C/metabolismo , Receptores de Esteroides/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Humanos , Dados de Sequência Molecular , Fosforilação , Proteína Quinase C/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Esteroides/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Serina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...