Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2403865, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857624

RESUMO

High-entropy alloy (HEA) nanostructures arranged into well-defined configurations hold great potential for accelerating the development of electronics, photonics, catalysis, and device integration. However, the random nucleation induced by the disparity in physicochemical properties of multiple elements makes it challenging to achieve single-particle synthesis at the patterned preset sites in the high-entropy scenario. Herein, the liquid metal nanoreactor strategy is proposed to realize the construction of HEA arrays. The coalescence of the liquid metal driven by the tendency to decrease surface energy provides a restricted environment for the nucleation and growth to form single HEA particles at the preset locations, which can be regarded as a self-confinement reaction. Liquid metal endowing a low diffusion energy barrier on the substrate and a high diffusivity of the alloy system can dynamically promote the aggregation process. As a result, the HEA array is prepared with elements up to eleven and possesses uniform periodicity, which exhibits excellent holography response in a broad spectrum. This work injects new vitality into the construction of HEA nanopatterns and provides an excellent platform for propelling their fundamental research and applications.

2.
Small ; 20(9): e2304147, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37875665

RESUMO

Room-temperature gallium-based liquid metals (RT-GaLMs) have garnered significant interest recently owing to their extraordinary combination of fluidity, conductivity, stretchability, self-healing performance, and biocompatibility. They are ideal materials for the manufacture of flexible electronics. By changing the composition and oxidation of RT-GaLMs, physicochemical characteristics of the liquid metal can be adjusted, especially the regulation of rheological, wetting, and adhesion properties. This review highlights the advancements in the liquid metals used in flexible electronics. Meanwhile related characteristics of RT-GaLMs and underlying principles governing their processing and applications for flexible electronics are elucidated. Finally, the diverse applications of RT-GaLMs in self-healing circuits, flexible sensors, energy harvesting devices, and epidermal electronics, are explored. Additionally, the challenges hindering the progress of RT-GaLMs are discussed, while proposing future research directions and potential applications in this emerging field. By presenting a concise and critical analysis, this paper contributes to the advancement of RT-GaLMs as an advanced material applicable for the new generation of flexible electronics.

3.
Nanoscale Adv ; 4(12): 2752-2761, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-36132291

RESUMO

Controllable directional transport of a liquid metal nanodroplet in a microchannel has been a challenge in the field of nanosensors, nanofluidics, and nanofabrication. In this paper, we report a novel design that the self-actuation of a gallium nanodroplet in a two-plate confinement microchannel could be achieved via a continuous wetting gradient. More importantly, suitable channel parameters could be used to manipulate the dynamic behavior of the gallium nanodroplet. The self-actuation transport in the two-plate confinement microchannel is the result of the competition between the driving force from the difference of the Laplace pressure and energy dissipation from the viscous resistance. Furthermore, we have identified the conditions to assess whether the droplet will pass through the contractive cross-section or not. This work can provide guidance for manipulating liquid metal nanodroplets in microchannels.

4.
J Phys Chem A ; 126(29): 4772-4780, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35834351

RESUMO

We report theoretical evidence of the substrate-induced liquid-liquid phase transition (LLPT) behaviors in a single Al droplet and Ti-Al droplets. The Al droplet can produce an LLPT induced by substrates in part, forming a special three-layer structure. However, the introduction of a Ti droplet can promote the LLPT in an Al droplet. Al and Ti droplets do not coalesce into a homogeneously mixed droplet but produce the ordered liquid films. The substrate-induced LLPT in the Al droplet is characterized by the transition from the disordered to ordered structure. Results indicate that the substrate and the Ti droplet are the driving forces to promote the LLPT. The LLPT of the Ti-Al droplets in the wedge-shaped substrate is also observed, indicating that the confined Ti-Al droplets are more likely to undergo an LLPT.

5.
Chemphyschem ; 23(17): e202200177, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35491471

RESUMO

Pentacene polycyclic aromatic hydrocarbons are the most promising organic semiconductor materials among aromatic compounds due to their potential optoelectronic properties. Introducing nitrogen atoms into the main chain of pentacene is supposed to tune the electronic structure and develop new high-performance organic molecular devices. Herein, we have investigated the electron transport properties of N-heteropentacenes consisting of different numbers, positions, and valence states of N atoms using density functional theory (DFT) and nonequilibrium Green's function (NEGF) method. The results show that the transport properties of N-heteropentacenes are strongly dependent on whether the C-N is a single or double bond. For devices with C-N double bonds, the change of current with voltage is consistent, and its electron transport properties are independent of the number and position of N atoms. In comparison, C-N single-bond devices exhibit an early negative differential resistance (NDR) and significant rectification. Moreover, the threshold voltages exist within certain bias voltages for different numbers of N atoms and might even show a second NDR. These studies would be useful to design performance-enhancing molecular devices by manipulating the molecular structure of N-heteropentacenes.


Assuntos
Eletrônica , Nitrogênio , Transporte de Elétrons , Estrutura Molecular , Compostos Orgânicos
6.
Langmuir ; 37(46): 13654-13663, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34747618

RESUMO

Liquid metal movement in microfluidic devices generally requires an external stimulus to achieve its motion, which results in many difficulties to precisely manipulate its motion at a nanoscale. Therefore, there is an attempt to control the motion of a liquid metal droplet without the input of an external force. In this paper, we report an approach to achieve the self-actuation of a gallium nanodroplet in radial texture gradients on substrates. The results have proved the validity of this method. It is suggested that there are four stages in the self-motion of the droplet and that the precursor film forming on the second stage plays a pivotal role in the motion. Furthermore, how the impact velocity affects the self-actuation of the nanodroplet on the gradient surface is also studied. We find that the moderate impacting velocity hinders the self-actuation of the gallium nanodroplet. This study is very helpful to regulate the self-actuation on patterned substrates and facilitate their applications in the fields of microfluidics devices, soft robots, and liquid sensors.

7.
Langmuir ; 37(31): 9429-9438, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34320320

RESUMO

Wettability of liquid metal gallium is of vital significance in the field of modern industries, such as direct writing printing and microfluidics. A liquid interface is a recently developed and promising approach to regulate wettability but has not been well applied in liquid metals yet. This study focuses on the wetting performance of gallium droplets on organic liquid films. The results show that the organic liquid film could change the wetting state of the gallium droplet. Based on the solid substrate roughness and surface tension of the organic liquid, we could estimate whether the gallium droplet is in a slippery Wenzel or a Cassie state. Subsequently, we apply the thermodynamic stable model on different organic liquid films by spreading parameters to predict a priori whether an arbitrary combination of solid roughness and organic liquid is suitable for designing lubricant-infused surfaces (LIS) used in gallium droplets. More interestingly, we found that the "cloaking" could delay surface oxide formation, which will benefit the manipulation of liquid metal droplets. This paper would provide a better understanding of wettability of liquid metal on an organic liquid surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...