Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anim Nutr ; 6(1): 107-114, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32211536

RESUMO

The cystine/glutamate exchanger (xCT, SLC7A11) is a component of the system Xc amino-acid antiporter that is able to export glutamate and import cysteine into cells. The xCT amino acid exchanger has received a lot of attention, due to the fact that cysteine is an essential substrate for the synthesis of glutathione (GSH), an endogenous antioxidant in cells. The objective of this research was to clone the full-length cDNA of chicken xCT, and to investigate the gene expression of xCT in different tissues, including intestinal segments of broiler chickens during development. The full-length cDNA of chicken xCT (2,703 bp) was obtained from the jejunum by reverse transcription-PCR and sequenced. Homology tests showed that chicken xCT had 80.4%, 80.2%, and 71.2% homology at the nucleotide level with humans, cattle, and rats, respectively. Likewise, amino acid sequence analysis showed that chicken xCT protein is 86.4%, 79.3%, and 75.6% homologous with humans, cattle, and rats, respectively. Additionally, phylogenetic analysis indicated that chicken xCT genes share a closer genetic relationship with humans and cattle, than with rats. The chicken xCT protein has 12 transmembrane helixes, 6 extracellular loops, and 5 intracellular loops. The mRNA of xCT was detected in all tissues, including intestinal segments, in which the mRNA expression of xCT was significantly higher (P < 0.05) within the colon, compared to the jejunum and ileum. During development, a linear pattern of changes regarding the levels of the xCT mRNA was found, indicating that there was an abundance of xCT within the duodenum (P < 0.05). Furthermore, there were changes of the xCT mRNA abundance in the colon during development, which displayed linear and cubic patterns (P < 0.05). These results indicated that xCT is widely expressed both in intestinal segments, as well as other organs that are not associated with nutrient absorption. Further investigation is needed to characterize the functional relevance of xCT activity in oxidative stress and inflammation in the small intestine of broiler chickens.

2.
J Anim Sci ; 97(6): 2402-2413, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30887022

RESUMO

Taste receptors including calcium sensing receptor (CaSR) are expressed in various animal tissues, and CaSR plays important roles in nutrient sensing and the physiology, growth, and development of animals. However, molecular distribution of porcine CaSR (pCaSR) in different tissues, especially along the longitudinal axis of the digestive tract in weaned piglets, is still unknown. In the present study, we investigated the distribution and localization of pCaSR in the different tissues including intestinal segments of weaned piglets. Six male pigs were anesthetized and euthanized. Different tissues such as intestinal segments were collected. The pCaSR mRNA abundance, protein abundance, and localization were measured by real-time PCR, Western blotting, and immunohistochemistry, respectively. The mRNA and protein of pCaSR were detected in the kidney, lung, liver, stomach, duodenum, jejunum, ileum, and colon. The pCaSR mRNA was much higher (five to 180 times) in the kidney when compared with other tissues (P < 0.05). The ileum had higher pCaSR mRNA and protein abundances than the stomach, duodenum, jejunum, and colon (P < 0.05). Immunohistochemical staining results indicated that the pCaSR protein was mostly located in the epithelia of the stomach, duodenum, jejunum, ileum, and colon. These results demonstrate that pCaSR is widely expressed in different tissues including intestinal segments in weaned piglets and the ileum has a higher expression level of pCaSR. Further research is needed to confirm the expression of CaSR in the different types of epithelial cells isolated from weaned piglets and characterize the functions of pCaSR, its potential ligands and cell signaling pathways related to CaSR activation in enteroendocrine cells and potentially in enterocytes.


Assuntos
Trato Gastrointestinal/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Suínos/fisiologia , Animais , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/fisiologia , Masculino , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
3.
Anim Nutr ; 4(2): 126-136, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30140752

RESUMO

This review article summarizes the efficacy, feasibility and potential mechanisms of the application of essential oils as antibiotic alternatives in swine production. Although there are numerous studies demonstrating that essential oils have several properties, such as antimicrobial, antioxidative and anti-inflammatory effects, feed palatability enhancement and improvement in gut growth and health, there is still a need of further investigations to elucidate the mechanisms underlying their functions. In the past, the results has been inconsistent in both laboratory and field studies because of the varied product compositions, dosages, purities and growing stages and conditions of animals. The minimal inhibitory concentration (MIC) of essential oils needed for killing enteric pathogens may not ensure the optimal feed intake and the essential oils inclusion cost may be too high in swine production. With the lipophilic and volatile nature of essential oils, there is a challenge in effective delivery of essential oils within pig gut and this challenge can partially be resolved by microencapsulation and nanotechnology. The effects of essential oils on inflammation, oxidative stress, microbiome, gut chemosensing and bacterial quorum sensing (QS) have led to better production performance of animals fed essential oils in a number of studies. It has been demonstrated that essential oils have good potential as antibiotic alternatives in feeds for swine production. The combination of different essential oils and other compounds (synergistic effect) such as organic acids seems to be a promising approach to improve the efficacy and safety of essential oils in applications. High-throughput systems technologies have been developed recently, which will allow us to dissect the mechanisms underlying the functions of essential oils and facilitate the use of essential oils in swine production.

4.
Gene ; 498(2): 288-95, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22387301

RESUMO

Microtus fortis is a special resource of rodent in China. It is a promising experimental animal model for the study on the mechanism of Schistosome japonicum resistance. The first complete mitochondrial genome sequence for Microtus fortis calamorum, a subspecies of M. fortis (Arvicolinae, Rodentia), was reported in this study. The mitochondrial genome sequence of M. f. calamorum (Genbank: JF261175) showed a typical vertebrate pattern with 13 protein coding genes, 2 ribosomal RNAs, 22 transfer RNAs and one major noncoding region (CR region).The extended termination associated sequences (ETAS-1 and ETAS-2) and conserved sequence block 1 (CSB-1) were found in the CR region. The putative origin of replication for the light strand (O(L)) of M. f. calamorum was 35bp long and showed high conservation in stem and adjacent sequences, but the difference existed in the loop region among three species of genus Microtus. In order to investigate the phylogenetic position of M. f. calamorum, the phylogenetic trees (Maximum likelihood and Bayesian methods) were constructed based on 12 protein-coding genes (except for ND6 gene) on H strand from 16 rodent species. M. f. calamorum was classified into genus Microtus, Arvcicolinae for the highly phylogenetic relationship with Microtus kikuchii (Taiwan vole). Further phylogenetic analysis results based on the cytochrome b gene ranged from M. f. calamorum to one of the subspecies of M. fortis, which formed a sister group of Microtus middendorfii in the genus Microtus.


Assuntos
Arvicolinae/genética , Genoma Mitocondrial , Filogenia , Animais , Composição de Bases , Sequência de Bases , China , Códon , Citocromos b/genética , Dados de Sequência Molecular , Proteínas/genética , RNA Ribossômico , RNA de Transferência , Origem de Replicação
5.
Yi Chuan ; 33(9): 989-95, 2011 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-21951800

RESUMO

This study was to isolate microsatellite markers from Microtus fortis genome by magnetic beads enrichments. Through hybridization of biotin-labeled microsatellite oligonucleotide probes, which were captured by streptavidin-coated magnetic with the adaptor-ligated enzyme-digested genome fragments, single-stranded DNA fragments containing microsatellites were obtained. After PCR amplification, these fragments were then cloned into T vectors and were transformed into competent cells subsequently. Ninety-two microsatellite sequences were randomly isolated from 70 positive clones. Twenty-one out of 27 pairs of designed microsatellite primers were screened out from the microsatellite sequences, and 10 out of the 21 microsatellite loci were used to investigate the genetic diversity of three populations of M. fortis, Hunan (wild), Hunan (domesticated), and Ningxia (domesticated). All the 10 microsatellite loci used to analyze the genetic diversity exhibited a good level of polymorphism. The values of observed number of alleles (Na), effective number of alleles (Ne), observed heterozygosity (Ho), expected heterozygosity (He) and polymorphic information content (PIC) were all the highest in the Hunan (wild) population, lower in the Hunan (domesticated) population, and the lowest in the Ningxia (domesticated) population.


Assuntos
Arvicolinae/classificação , Arvicolinae/genética , Variação Genética/genética , Repetições de Microssatélites/genética , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...