Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Pharm Sin B ; 14(5): 2097-2118, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38799640

RESUMO

Choline acetyltransferase (ChAT)-positive neurons in neural stem cell (NSC) niches can evoke adult neurogenesis (AN) and restore impaired brain function after injury, such as acute ischemic stroke (AIS). However, the relevant mechanism by which ChAT+ neurons develop in NSC niches is poorly understood. Our RNA-seq analysis revealed that dimethylarginine dimethylaminohydrolase 1 (DDAH1), a hydrolase for asymmetric NG,NG-dimethylarginine (ADMA), regulated genes responsible for the synthesis and transportation of acetylcholine (ACh) (Chat, Slc5a7 and Slc18a3) after stroke insult. The dual-luciferase reporter assay further suggested that DDAH1 controlled the activity of ChAT, possibly through hypoxia-inducible factor 1α (HIF-1α). KC7F2, an inhibitor of HIF-1α, abolished DDAH1-induced ChAT expression and suppressed neurogenesis. As expected, DDAH1 was clinically elevated in the blood of AIS patients and was positively correlated with AIS severity. By comparing the results among Ddah1 general knockout (KO) mice, transgenic (TG) mice and wild-type (WT) mice, we discovered that DDAH1 upregulated the proliferation and neural differentiation of NSCs in the subgranular zone (SGZ) under ischemic insult. As a result, DDAH1 may promote cognitive and motor function recovery against stroke impairment, while these neuroprotective effects are dramatically suppressed by NSC conditional knockout of Ddah1 in mice.

2.
Neurochem Int ; 150: 105155, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34384853

RESUMO

As well as their ion transportation function, the voltage-dependent potassium channels could act as the cell signal inducer in a variety of pathogenic processes. However, their roles in neurogenesis after stroke insults have not been clearly illustrated. In our preliminary study, the expressions of voltage-dependent potassium channels Kv4.2 was significantly decreased after stroke in cortex, striatum and hippocampus by real-time quantitative PCR assay. To underlie the neuroprotection of Kv4.2 in stroke rehabilitation, recombinant plasmids encoding the cDNAs of mouse Kv4.2 was constructed. Behavioral tests showed that the increased Kv4.2 could be beneficial to the recovery of the sensory, the motor functions and the cognitive deficits after stroke. Temozolomide (TMZ), an inhibitor of neurogenesis, could partially abolish the mentioned protections of Kv4.2. The immunocytochemical staining showed that Kv4.2 could promote the proliferations of neural stem cells and induce the neural stem cells to differentiate into neurons in vitro and in vivo. And Kv4.2 could up-regulate the expressions of ERK1/2, p-ERK1/2, p-STAT3, NGF, p-TrkA, and BDNF, CAMKII and the concentration of intracellular Ca2+. Namely, we concluded that Kv4.2 promoted neurogenesis through ERK1/2/STAT3, NGF/TrkA, Ca2+/CAMKII signal pathways and rescued the ischemic impairments. Kv4.2 might be a potential drug target for ischemic stroke intervention.


Assuntos
Isquemia Encefálica/metabolismo , Isquemia Encefálica/prevenção & controle , AVC Isquêmico/metabolismo , AVC Isquêmico/prevenção & controle , Neurogênese/fisiologia , Canais de Potássio Shal/biossíntese , Animais , Isquemia Encefálica/genética , Linhagem Celular Transformada , AVC Isquêmico/genética , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Canais de Potássio Shal/análise , Canais de Potássio Shal/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...