Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 13(10)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36295947

RESUMO

A novel output-capacitorless low-dropout regulator (OCL-LDO) with an embedded slew-rate-enhancement (SRE) circuit is presented in this paper. The SRE circuit adopts a transient current-boost strategy to improve the slew rate at the gate of the power transistor when a large voltage spike at the output is detected. In addition, a feed-forward transconductance cell is introduced to form a push−pull output structure with the power transistor. The simulation results show that the maximum transient output voltage variation is 23.5 mV when the load current ILOAD is stepped from 0 to 100 mA in 100 ns with a load capacitance of 100 pF, and the settling time is 1.2 µs. The proposed OCL-LDO consumes a quiescent current of 30 µA and has a dropout voltage of 200 mV for the maximum output current of 100 mA.

2.
Micromachines (Basel) ; 13(10)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36296021

RESUMO

A fully integrated low-dropout (LDO) regulator with improved load regulation and transient responses in 40 nm technology is presented in this paper. Combining adjustable threshold push-pull stage (ATPS) and master-slave power transistors topology, the proposed LDO maintains a three-stage structure within the full load range. The proposed structure ensures the steady-state performance of LDO and achieves 0.017 mV/mA load regulation. The ATPS consumes little quiescent current at light load current condition, and the turn-on threshold of the ATPS can be adjusted by a current source. Once the value of current source is set, the turn-on threshold is also determined. A benefit of the proposed structure is that the LDO can be stable from 0 to 100 mA load current with a maximum 100 pF parasitic load capacitance and a 0.7 pF compensation capacitor. It also shows good figure of merit (FOM) without an extra transient enhanced circuit. For the maximum 100 mA load transient with 100 ns edge time, the undershoot and overshoot are less than 33 mV. The dropout voltage of the regulator is 200 mV with input voltage of 1.1 V. The total current consumption of the LDO was 24.6 µA at no load.

3.
Micromachines (Basel) ; 12(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34577728

RESUMO

Multilevel storage and the continuing scaling down of technology have significantly improved the storage density of phase change memory, but have also brought about a challenge, in that data reliability can degrade due to the resistance drift. To ensure data reliability, many read and write operation technologies have been proposed. However, they only mitigate the influence on data through read and write operations after resistance drift occurs. In this paper, we consider the working principle of multilevel storage for PCM and present a novel 2T2R structure circuit to increase the storage density and reduce the influence of resistance drift fundamentally. To realize 3-bit per cell storage, a wide range of resistances were selected as different states of phase change memory. Then, we proposed a 4:3 compressing encoding scheme to transform the output data into binary data states. Therefore, the designed 2T2R was proven to have optimized storage density and data reliability by monitoring the conductance distribution at four time points (1 ms, 1 s, 6 h, 12 h) in 4000 devices. Simulation results showed that the resistance drift of our proposed 2T2R structure can significantly improve the storage density of multilevel storage and increase the data reliability of phase change memory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...