Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 14(1): 23, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759901

RESUMO

BACKGROUND: Neural stem cells (NSCs) are believed to have the most therapeutic potential for neurological disorders because they can differentiate into various neurons and glial cells. This research evaluated the safety and efficacy of intranasal administration of NSCs in children with cerebral palsy (CP). The functional brain network (FBN) analysis based on electroencephalogram (EEG) and voxel-based morphometry (VBM) analysis based on T1-weighted images were performed to evaluate functional and structural changes in the brain. METHODS: A total of 25 CP patients aged 3-12 years were randomly assigned to the treatment group (n = 15), which received an intranasal infusion of NSCs loaded with nasal patches and rehabilitation therapy, or the control group (n = 10) received rehabilitation therapy only. The primary endpoints were the safety (assessed by the incidence of adverse events (AEs), laboratory and imaging examinations) and the changes in the Gross Motor Function Measure-88 (GMFM-88), the Activities of Daily Living (ADL) scale, the Sleep Disturbance Scale for Children (SDSC), and some adapted scales. The secondary endpoints were the FBN and VBM analysis. RESULTS: There were only four AEs happened during the 24-month follow-up period. There was no significant difference in the laboratory examinations before and after treatment, and the magnetic resonance imaging showed no abnormal nasal and intracranial masses. Compared to the control group, patients in the treatment group showed apparent improvements in GMFM-88 and ADL 24 months after treatment. Compared with the baseline, the scale scores of the Fine Motor Function, Sociability, Life Adaptability, Expressive Ability, GMFM-88, and ADL increased significantly in the treatment group 24 months after treatment, while the SDSC score decreased considerably. Compared with baseline, the FBN analysis showed a substantial decrease in brain network energy, and the VBM analysis showed a significant increase in gray matter volume in the treatment group after NSCs treatment. CONCLUSIONS: Our results showed that intranasal administration of NSCs was well-tolerated and potentially beneficial in children with CP. TRIAL REGISTRATION: The study was registered in ClinicalTrials.gov (NCT03005249, registered 29 December 2016, https://www. CLINICALTRIALS: gov/ct2/show/NCT03005249 ) and the Medical Research Registration Information System (CMR-20161129-1003).


Assuntos
Paralisia Cerebral , Células-Tronco Neurais , Criança , Humanos , Paralisia Cerebral/terapia , Atividades Cotidianas , Administração Intranasal , Encéfalo/diagnóstico por imagem
2.
Front Pediatr ; 11: 1297563, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38250587

RESUMO

Objective: Holistic care is a key element in nursing care. Aiming at the heterogeneous disease of cerebral palsy, researchers focused on children with cerebral palsy who received transnasal transplantation of neural stem cells as a specific group. Based on establishing a multidisciplinary team, comprehensive care is carried out for this type of patient during the perioperative period to improve the effectiveness and safety of clinical research and increase the comfort of children. Methods: Between January 2018 and June 2023, 22 children with cerebral palsy underwent three transnasal transplants of neural stem cells. Results: No adverse reactions related to immune rejection were observed in the 22 children during hospitalization and follow-up. All children tolerated the treatment well, and the treatment was superior. One child developed nausea and vomiting after sedation; three had a small amount of bleeding of nasal mucosa after transplantation. Two children had a low fever (≤38.5°C), and one had a change in the type and frequency of complex partial seizures. Moreover, 3 children experienced patch shedding within 4 h of patch implantation into the nasal cavity. Conclusion: The project team adopted nasal stem cell transplantation technology. Based on the characteristics of transnasal transplantation of neural stem cells in the treatment of neurological diseases in children, a comprehensive and novel holistic care plan is proposed. It is of great significance to guide caregivers of children to complete proper care, further improve the safety and effectiveness of treatment, and reduce the occurrence of complications.

3.
Front Genet ; 13: 956415, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035113

RESUMO

Biological pattern formation ensures that tissues and organs develop in the correct place and orientation within the body. A great deal has been learned about cell and tissue staining techniques, and today's microscopes can capture digital images. A light microscope is an essential tool in biology and medicine. Analyzing the generated images will involve the creation of unique analytical techniques. Digital images of the material before and after deformation can be compared to assess how much strain and displacement the material responds. Furthermore, this article proposes Development Biology Patterns using Digital Image Technology (DBP-DIT) to cell image data in 2D, 3D, and time sequences. Engineered materials with high stiffness may now be characterized via digital image correlation. The proposed method of analyzing the mechanical characteristics of skin under various situations, such as one direction of stress and temperatures in the hundreds of degrees Celsius, is achievable using digital image correlation. A DBP-DIT approach to biological tissue modeling is based on digital image correlation (DIC) measurements to forecast the displacement field under unknown loading scenarios without presupposing a particular constitutive model form or owning knowledge of the material microstructure. A data-driven approach to modeling biological materials can be more successful than classical constitutive modeling if adequate data coverage and advice from partial physics constraints are available. The proposed procedures include a wide range of biological objectives, experimental designs, and laboratory preferences. The experimental results show that the proposed DBP-DIT achieves a high accuracy ratio of 99,3%, a sensitivity ratio of 98.7%, a specificity ratio of 98.6%, a probability index of 97.8%, a balanced classification ratio of 97.5%, and a low error rate of 38.6%.

4.
Redox Biol ; 39: 101835, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33360688

RESUMO

Reactive oxygen species (ROS) contribute to cellular redox environment and serve as signaling molecules. Excessive ROS can lead to oxidative stress that are involved in a broad spectrum of physiological and pathological conditions. Stem cells have unique ROS regulation while cancer cells frequently show a constitutive oxidative stress that is associated with the invasive phenotype. Antioxidants have been proposed to forestall tumor progression while targeted oxidants have been used to destroy tumor cells. However, the delicate beneficial range of ROS levels for stem cells and tumor cells under distinct contexts remains elusive. Here, we used Drosophila midgut intestinal stem cell (ISCs) as an in vivo model system to tackle this question. The ROS levels of ISCs remained low in comparison to that of differentiated cells and increased with ageing, which was accompanied by elevated proliferation of ISCs in aged Drosophila. Neither upregulation nor downregulation of ROS levels significantly affected ISCs, implicating an intrinsic homeostatic range of ROS in ISCs. Interestingly, we observed similar moderately elevated ROS levels in both tumor-like ISCs induced by Notch (N) depletion and extracellular matrix (ECM)-deprived ISCs induced by ß-integrin (mys) depletion. Elevated ROS levels further promoted the proliferation of tumor-like ISCs while reduced ROS levels suppressed the hyperproliferation phenotype; on the other hand, further increased ROS facilitated the survival of ECM-deprived ISCs while reduced ROS exacerbated the loss of ECM-deprived ISCs. However, N- and mys-depleted ISCs, which resembled metastatic tumor cells, harbored even higher ROS levels and were subjected to more severe cell loss, which could be partially prevented by ectopic supply of antioxidant enzymes, implicating a delicate pro-surviving and proliferating range of ROS levels for ISCs. Taken together, our results revealed stem cells can differentially respond to distinct ROS levels under various conditions and suggested that the antioxidant-based intervention of stem cells and tumors should be formulated with caution according to the specific situations.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Proliferação de Células , Proteínas de Drosophila/genética , Intestinos , Espécies Reativas de Oxigênio , Células-Tronco
5.
Mol Cell ; 80(4): 607-620.e12, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33113344

RESUMO

Aberrant mitophagy has been implicated in a broad spectrum of disorders. PINK1, Parkin, and ubiquitin have pivotal roles in priming mitophagy. However, the entire regulatory landscape and the precise control mechanisms of mitophagy remain to be elucidated. Here, we uncover fundamental mitophagy regulation involving PINK1 and a non-canonical role of the mitochondrial Tu translation elongation factor (TUFm). The mitochondrion-cytosol dual-localized TUFm interacts with PINK1 biochemically and genetically, which is an evolutionarily conserved Parkin-independent route toward mitophagy. A PINK1-dependent TUFm phosphoswitch at Ser222 determines conversion from activating to suppressing mitophagy. PINK1 modulates differential translocation of TUFm because p-S222-TUFm is restricted predominantly to the cytosol, where it inhibits mitophagy by impeding Atg5-Atg12 formation. The self-antagonizing feature of PINK1/TUFm is critical for the robustness of mitophagy regulation, achieved by the unique kinetic parameters of p-S222-TUFm, p-S65-ubiquitin, and their common kinase PINK1. Our findings provide new mechanistic insights into mitophagy and mitophagy-associated disorders.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Mitofagia , Fator Tu de Elongação de Peptídeos/metabolismo , Proteínas Quinases/metabolismo , Animais , Citosol/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Células HeLa , Humanos , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Fator Tu de Elongação de Peptídeos/genética , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Proteínas Quinases/genética , Transporte Proteico , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
Aging Cell ; 19(9): e13210, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32749068

RESUMO

How complex interactions of genetic, environmental factors and aging jointly contribute to dopaminergic degeneration in Parkinson's disease (PD) is largely unclear. Here, we applied frequent gene co-expression analysis on human patient substantia nigra-specific microarray datasets to identify potential novel disease-related genes. In vivo Drosophila studies validated two of 32 candidate genes, a chromatin-remodeling factor SMARCA4 and a biliverdin reductase BLVRA. Inhibition of SMARCA4 was able to prevent aging-dependent dopaminergic degeneration not only caused by overexpression of BLVRA but also in four most common Drosophila PD models. Furthermore, down-regulation of SMARCA4 specifically in the dopaminergic neurons prevented shortening of life span caused by α-synuclein and LRRK2. Mechanistically, aberrant SMARCA4 and BLVRA converged on elevated ERK-ETS activity, attenuation of which by either genetic or pharmacological manipulation effectively suppressed dopaminergic degeneration in Drosophila in vivo. Down-regulation of SMARCA4 or drug inhibition of MEK/ERK also mitigated mitochondrial defects in PINK1 (a PD-associated gene)-deficient human cells. Our findings underscore the important role of epigenetic regulators and implicate a common signaling axis for therapeutic intervention in normal aging and a broad range of age-related disorders including PD.


Assuntos
DNA Helicases/genética , Neurônios Dopaminérgicos/fisiologia , Epigênese Genética/genética , Sistema de Sinalização das MAP Quinases/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Idoso , Envelhecimento , Animais , Modelos Animais de Doenças , Humanos
7.
Development ; 145(21)2018 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30327322

RESUMO

Long non-coding RNAs (lncRNAs) are non-protein coding transcripts that are involved in a broad range of biological processes. Here, we examine the functional role of lncRNAs in feather regeneration. RNA-seq profiling of the regenerating feather blastema revealed that Wnt signaling is among the most active pathways during feather regeneration, with Wnt ligands and their inhibitors showing distinct expression patterns. Co-expression analysis identified hundreds of lncRNAs with similar expression patterns to either the Wnt ligands (the Lwnt group) or their downstream target genes (the Twnt group). Among these, we randomly picked two lncRNAs in the Lwnt group and three lncRNAs in the Twnt group to validate their expression and function. Members in the Twnt group regulated feather regeneration and axis formation, whereas members in the Lwnt group showed no obvious phenotype. Further analysis confirmed that the three Twnt group members inhibit Wnt signal transduction and, at the same time, are downstream target genes of this pathway. Our results suggest that the feather regeneration model can be utilized to systematically annotate the functions of lncRNAs in the chicken genome.


Assuntos
Plumas/fisiologia , RNA Longo não Codificante/metabolismo , Regeneração/genética , Via de Sinalização Wnt/genética , Animais , Galinhas/genética , Galinhas/fisiologia , Derme/fisiologia , Epitélio/fisiologia , Retroalimentação Fisiológica , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Ligantes
8.
Int J Comput Biol Drug Des ; 6(1-2): 60-71, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23428474

RESUMO

Gene Co-expression Network (GCN) analysis has been widely used for gene function and disease biomarker discovery. In this study, we present a workflow for identifying GCN associated with colon cancer metastasis. The workflow includes dense network discovery from weighted GCN followed by network activity analysis using a mutual information-based approach to identify gene networks related to metastasis. Our findings suggest several genomic regions as genetic aberrations related to colon cancer malignancy including chr11q13, 20q13, 8q24 and 14q22-23. Our work also demonstrates a novel way of interpreting gene co-expression analysis results besides functional relationships and the effectiveness of the mutual information based network analysis in detecting subtle changes between different disease states.


Assuntos
Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Algoritmos , Estudos de Casos e Controles , Neoplasias do Colo/metabolismo , Variações do Número de Cópias de DNA , Bases de Dados Genéticas , Redes Reguladoras de Genes , Loci Gênicos , Humanos , Metástase Neoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...