Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inflammation ; 47(1): 285-306, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37759136

RESUMO

Itaconate is an unsaturated dicarboxylic acid that is derived from the decarboxylation of the Krebs cycle intermediate cis-aconitate and has been shown to exhibit anti-inflammatory and anti-bacterial/viral properties. But the mechanisms underlying itaconate's anti-inflammatory activities are not fully understood. Necroptosis, a lytic form of regulated cell death (RCD), is mediated by receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like protein (MLKL) signaling. It has been involved in the pathogenesis of organ injury in many inflammatory diseases. In this study, we aimed to explore whether itaconate and its derivatives can inhibit necroptosis in murine macrophages, a mouse MPC-5 cell line and a human HT-29 cell line in response to different necroptotic activators. Our results showed that itaconate and its derivatives dose-dependently inhibited necroptosis, among which dimethyl itaconate (DMI) was the most effective one. Mechanistically, itaconate and its derivatives inhibited necroptosis by suppressing the RIPK1/RIPK3/MLKL signaling and the oligomerization of MLKL. Furthermore, DMI promoted the nuclear translocation of Nrf2 that is a critical regulator of intracellular redox homeostasis, and reduced the levels of intracellular reactive oxygen species (ROS) and mitochondrial superoxide (mtROS) that were induced by necroptotic activators. Consistently, DMI prevented the loss of mitochondrial membrane potential induced by the necroptotic activators. In addition, DMI mitigated caerulein-induced acute pancreatitis in mice accompanied by reduced activation of the necroptotic signaling in vivo. Collectively, our study demonstrates that itaconate and its derivatives can inhibit necroptosis by suppressing the RIPK1/RIPK3/MLKL signaling, highlighting their potential applications for treating necroptosis-associated diseases.


Assuntos
Pancreatite , Proteínas Quinases , Succinatos , Camundongos , Humanos , Animais , Proteínas Quinases/metabolismo , Doença Aguda , Anti-Inflamatórios , Apoptose
2.
Int Immunopharmacol ; 108: 108867, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35605433

RESUMO

Dimethyl fumarate (DMF) is a fumaric acid derivative clinically approved for the treatment of some inflammatory diseases, but the underlying mechanism for its therapeutic effects remains incompletely understood. NLR family pyrin domain containing 3 (NLRP3) inflammasome activation has critical roles in innate immune responses to various infections and sterile inflammations. In this study, we aimed to explore whether DMF affects auto-immune hepatitis (AIH) in mice induced by concanavalin A (Con A) by modulating NLRP3 inflammasome activation. The results showed that DMF suppressed the activation of NLRP3 inflammasome activation in lipopolysaccharide-primed murine bone marrow-derived macrophages upon ATP or nigericin treatment, as evidenced by reduced cleavage of pro-caspase-1, release of mature interleukin-1ß (IL-1ß) and generation of gasdermin D N-terminal fragment (GSDMD-NT). DMF also greatly reduced ASC speck formation upon the stimulation of nigericin or ATP, indicating its inhibitory effect on NLRP3 inflammasome assembly. Consistent with reduced generation of GSDMD-NT, ATP or nigericin-induced pyroptosis was markedly suppressed by DMF. Moreover, DMF treatment alleviated mitochondrial damage induced by ATP or nigericin. Interestingly, all these effects were reversed by the protein kinase A (PKA) pathway inhibitors (H89 and MDL-12330A). Mechanistically, DMF enhanced PKA signaling and thus increased NLRP3 phosphorylation at PKA-specific sites to attenuate its activation. Importantly, DMF decreased serum levels of inflammatory cytokines and ameliorated liver injury in Con A-induced AIH of mice, concomitant with reduced the generation of caspase-1p10 and GSDMD-NT and alleviating mitochondrial aggregation in the liver. Collectively, DMF displayed anti-inflammatory effects by inhibiting NLRP3 inflammasome activation likely through regulating PKA signaling, highlighting its potential application in treating AIH.


Assuntos
Hepatite Autoimune , Inflamassomos , Trifosfato de Adenosina/farmacologia , Animais , Caspase 1/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , Hepatite Autoimune/tratamento farmacológico , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nigericina/farmacologia , Nigericina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...