Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6826, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884536

RESUMO

Iron is an extraordinary promoter to impose nickel/cobalt (hydr)oxides as the most active oxygen evolution reaction catalysts, whereas the synergistic effect is actively debated. Here, we unveil that active oxygen species mediate a strong electrochemical interaction between iron oxides (FeOxHy) and the supporting metal oxyhydroxides. Our survey on the electrochemical behavior of nine supporting metal oxyhydroxides (M(O)OH) uncovers that FeOxHy synergistically promotes substrates that can produce active oxygen species exclusively. Tafel slopes correlate with the presence and kind of oxygen species. Moreover, the oxygen evolution reaction onset potentials of FeOxHy@M(O)OH coincide with the emerging potentials of active oxygen species, whereas large potential gaps are present for intact M(O)OH. Chemical probe experiments suggest that active oxygen species could act as proton acceptors and/or mediators for proton transfer and/or diffusion in cooperative catalysis. This discovery offers a new insight to understand the synergistic catalysis of Fe-based oxygen evolution reaction electrocatalysts.

2.
Small ; 19(45): e2302556, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37469219

RESUMO

Hierarchically structured bimetal hydroxides are promising for electrocatalytic oxygen evolution reaction (OER), yet synthetically challenging. Here, the nanoconfined hydrolysis of a hitherto unknown CoFe-bimetal-organic compound (b-MOC) is reported for the controllable synthesis of highly OER active nanostructures of CoFe layered double hydroxide (LDH). The nanoporous structures trigger the nanoconfined hydrolysis in the sacrificial b-MOC template, producing CoFe LDH core-shell octahedrons, nanoporous octahedrons, and hollow nanocages with abundant under-coordinated metal sites. The hollow nanocages of CoFe LDH demonstrate a remarkable turnover frequency (TOF) of 0.0505 s-1 for OER catalysis at an overpotential of 300 mV. It is durable in up to 50 h of electrolysis at step current densities of 10-100 mA cm-2 . Ex situ and in situ X-ray absorption spectroscopic analysis combined with theoretical calculations suggests that under-coordinated Co cations can bind with deprotonated Fe-OH motifs to form OER active Fe-O-Co dimmers in the electrochemical oxidation process, thereby contributing to the good catalytic activity. This work presents an efficient strategy for the synthesis of highly under-coordinated bimetal hydroxide nanostructures. The mechanistic understanding underscores the power of maximizing the amount of bimetal-dimer sites for efficient OER catalysis.

3.
ACS Appl Mater Interfaces ; 15(21): 25575-25583, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37204059

RESUMO

Electronic transport plays a pivotal role in the electrolysis of semiconducting electrocatalysts for oxygen evolution reaction (OER), while it is mostly underestimated and largely unexplored. Here, by investigating the electronic transport behavior of seven archetypical crystalline Co/Ni/Fe-based (oxy)hydroxides (unary, binary, and ternary) under OER potential, we study how and the extent to which it affects the apparent catalytic performances. The electronic transports of unary metal (oxy)hydroxides follow the order of Co > Ni > Fe, and their binary or ternary compounds can generally impose one order of magnitude higher electrical conductivity. By studying the dependence of catalytic performances on electrical conductivities, we further unveil that charge transportability not only determines the electronic accessibility of catalytic nanoparticles but also, to our surprise, regulates the reaction kinetics of the electronically accessible active sites. Remarkably, the regulation extent of reaction kinetics correlates with the electrical conductivities of electrocatalysts, suggesting that the electrocatalytic process is strongly coupled with electronic transport. The work presents an overview of electronic transports of crystalline (oxy)hydroxides under OER potentials and highlights their pivotal role in unfolding catalytic potential, holding both fundamental and technical implications for the screen and design of efficient electrocatalysts.

4.
Appl Opt ; 61(24): 6992-6999, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36256314

RESUMO

Using a short-wave infrared (SWIR) camera to improve daytime star detection ability has become a trend for near-ground star trackers. However, the noise of SWIR star images greatly decreases the accuracy of the attitude measurement results. Aiming at a real-time application of the star tracker, an adaptive section non-uniformity correction method based on the two-point correction algorithm for SWIR star images is proposed. The correction parameters of different sections are first calculated after the defective pixels are detected and excluded, and the real-time image is corrected using adaptive section parameters according to its gray value distribution. Finally, the defective pixels are compensated for by their adjacent corrected pixels. The correction results of both simulated and live-shot star images have verified the validity of the proposed method. It adapts to different sky background radiation, which is effective for the application of a star tracker. By comparing with other linear correction methods, it has the advantages of low calculation complexity, better real-time performance, and easier implementation in the hardware.

5.
ACS Appl Mater Interfaces ; 14(34): 38739-38749, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35975907

RESUMO

Electrocatalysts for the oxygen reduction reaction (ORR) play a central role in fuel cells and zinc-air batteries. Bimetal single atoms and nanoparticle hybrids are emerging ORR electrocatalysts, superior to the most exploited unary metal single-atom catalysts (SACs). Here, we report bimetal SAC-based nanofiber networks of Co3Fe7@Co/Fe-SAC for efficient ORR electrocatalysis and zinc-air batteries. A facile and easy-to-scale-up process is developed, and the versatility is validated in three hybrids. Strong electronic interaction is revealed between bimetal single atoms and alloy nanoparticles, leading to improved catalytic performances for ORR. Specifically, the Co3Fe7@Co/Fe-SAC hybrids exhibit a half-wave potential of 0.841 V in a basic electrolyte, comparable to the Pt/C electrocatalyst. Assembled in a zinc-air battery, a Co3Fe7@Co/Fe-SAC hybrid-based cell demonstrates a power density 1.8 times higher than the benchmark Pt/C-IrO2-based one, and it is stable for 150 cycles galvanostatic charge/discharge. The superior device performance is attributed to the appealing intrinsic activity, the carbon shielding effect for anti-leaching, and the hierarchical porous networks for large accessibility of active sites and favorable mass transport. Theoretical calculations suggest that alloy nanoparticles significantly improved the intrinsic catalytic activity of Fe single-atom sites at the expense of slightly lowering the activity of Co single-atom sites. This work presents a versatile process for the mass production of efficient composite electrocatalysts and highlights the power of bimetal single-atom-based hybrids and hierarchically porous structures for ORR device performances.

6.
Rev Sci Instrum ; 92(3): 035001, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820019

RESUMO

The stellar/inertial integrated navigation system, which combines the inertial navigation system (INS) and the star tracker, can restrain the accumulated INS errors. In the traditional loosely coupled stellar/inertial integration method, the star tracker needs to observe more than two navigation stars on an image for attitude determination and to use the attitude information as the observation to estimate the systematic errors of the INS. However, under strong background radiation conditions, the star number in the field of view (FOV) usually drops below 3; thus, the loosely coupled method fails to work. To overcome this difficulty, an improved tightly coupled stellar/inertial integration method based on the observation of the star centroid prediction error (SCPE) is proposed in this paper. It calculates the difference between the extracted star centroid and the predicted star centroid, namely, the SCPE, as the observation and then estimates the INS errors with a Kalman filter. Numerical simulations and ground experiments are conducted to validate the feasibility of the tightly coupled method. It is proved that the proposed method, which makes full use of all star observation information, can improve the navigation accuracy compared with the loosely coupled method and is more robust when there are not enough stars in the FOV.

7.
Opt Express ; 27(11): 15548-15564, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31163750

RESUMO

When applied inside Earth's atmosphere, the star tracker is sensitive to sky background produced by atmospheric scattering and stray light. The shot noise induced by the strong background reduces star detection capability and even makes it completely out of operation. To improve the star detection capability, an attitude-correlated frames adding (ACFA) approach is proposed in this paper. Firstly, the attitude changes of the star tracker are measured by three gyroscope units (GUs). Then the mathematical relationship between the image coordinates at different time and the attitude changes of the star tracker is constructed (namely attitude-correlated transformation, ACT). Using the ACT, the image regions in different frames that correspond to the same star can be extracted and added to the current frame. After attitude-correlated frames adding, the intensity of the star signal increases by n times, while the shot noise increases by n~n/2 times due to its stochastic characteristic. Consequently, the signal-to-noise ratio (SNR) of the star image enhances by a factor of n~2n. Simulations and experimental results indicate that the proposed method can effectively improve the star detection ability. Hence, there are more dim stars detected and used for attitude determination. In addition, the star centroiding error induced by the background noise can also be reduced.

8.
Nanoscale ; 10(43): 20313-20320, 2018 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-30375608

RESUMO

Engineering compositions, structures, and defects can endow nanomaterials with optimized catalytic properties. Here, we report that cobalt oxide (CoOx) ultrathin nanosheets (UTNS, ∼1.6 nm thick) with a large number of oxygen defects and mixed cobalt valences can be obtained through a facile one-step hydrothermal protocol. The large number of oxygen defects make the ultrathin CoOx nanosheet a superior OER catalyst with low overpotentials of 315 and 365 mV at current densities of 50 and 200 mA cm-2, respectively. The stable framework-like architectures of the UTNS further ensure their high OER activity and durability. Our method represents a facile one-step preparation of CoOx nanostructures with tunable compositions, morphologies, and defects, and thus promotes OER properties. This strategy may find its wider applicability in designing active, robust, and easy-to-obtain catalysts for OER and other electrocatalytic systems.

9.
Chemistry ; 24(72): 19208-19215, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30353931

RESUMO

A decontaminating composite, Mg3 Al-LDH-Nb6 , has been successfully prepared by immobilizing Lindqvist [H3 Nb6 O19 ]5- (Nb6 ) into a Mg3 Al-based layered double hydroxide (Mg3 Al-LDH). To our knowledge, this represents the first successful approach to the immobilization of polyoxoniobate. As a versatile catalyst, Mg3 Al-LDH-Nb6 can effectively catalyze the degradation of both vesicant and nerve agent simulants by multiple pathways under mild conditions. Specifically, the sulfur mustard simulant, 2-chloroethyl ethyl sulfide (CEES), is converted into the corresponding nontoxic 2-chloroethyl ethyl sulfoxide (CEESO) by selective oxidation, whereas the Tabun (G-type nerve agent) simulant, diethyl cyanophosphonate (DECP), and the VX (V-type nerve agent) simulant, O,S-diethyl methylphosphonothioate (OSDEMP), are detoxified through hydrolysis and perhydrolysis, respectively. A possible mechanism is proposed on the basis of control experiments and spectroscopic studies. The Mg3 Al-LDH-Nb6 composite exhibits remarkable robustness and can be readily reused for up to ten cycles with negligible loss of its catalytic activity. More importantly, a protective "self-detoxifying" material has easily been constructed by integrating Mg3 Al-LDH-Nb6 into textiles. In this way, the flexible and permeable properties of textiles have been combined with the catalytic activity of polyoxoniobate to remove 94 % of CEES in 1 h by using nearly stoichiometric dilute H2 O2 (3 %) as oxidant with 96 % selectivity.

10.
Nanoscale ; 9(32): 11596-11604, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28770917

RESUMO

The oxygen evolution reaction (OER) is a vital half-reaction in water splitting and metal-air batteries. Developing earth-abundant, highly efficient and durable OER catalysts has faced huge challenges until now, because OER is a strict kinetic sluggish process. Herein, we report the construction of hierarchically porous graphitized carbon (HPGC) supported NiFe layered double hydroxides (LDHs) with a core-shell structure (denoted as HPGC@NiFe) by a facile strategy. The HPGC was first obtained by pyrolysing phenolic resin nanospheres with FeCl3 and ZnCl2 as the catalyst and the activator, respectively. Then the NiFe LDH arrays were directly grown on the HPGC by a one-step hydrothermal method. The as-synthesized HPGC@NiFe reveals excellent OER properties with a low onset potential, a lower overpotential of 265 mV (corresponding to the current density at 10 mA cm-2) and a small Tafel slope (56 mV per decade). And its catalytic activity is even superior to that of the start-of-the-art noble-metal catalyst IrO2/C. Notably, the HPGC@NiFe electrode shows admirable stability measured by performing 2000 cycle CVs and long-term electrolysis for 50 h. The prominent performance can be attributed to the synergistic effect between the NiFe-LDHs and the hierarchically porous graphitized carbon, in which the former can increase the exposure of the active sites, while the latter can increase the charge transfer efficiency. Our research implies the possibility for the development of low-cost layered double hydroxides as a promising candidate in electrochemical energy storage and conversion equipment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...