Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(19): e202319997, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38499464

RESUMO

High ambipolar mobility emissive conjugated polymers (HAME-CPs) are perfect candidates for organic optoelectronic devices, such as polymer light emitting transistors. However, due to intrinsic trade-off relationship between high ambipolar mobility and strong solid-state luminescence, the development of HAME-CPs suffers from high structural and synthetic complexity. Herein, a universal design principle and simple synthetic approach for HAME-CPs are developed. A series of simple non-fused polymers composed of charge transfer units, π bridges and emissive units are synthesized via a two-step microwave assisted C-H arylation and direct arylation polymerization protocol with high total yields up to 61 %. The synthetic protocol is verified valid among 7 monomers and 8 polymers. Most importantly, all 8 conjugated polymers have strong solid-state emission with high photoluminescence quantum yields up to 24 %. Furthermore, 4 polymers exhibit high ambipolar field effect mobility up to 10-2 cm2 V-1 s-1, and can be used in multifunctional optoelectronic devices. This work opens a new avenue for developing HAME-CPs by efficient synthesis and rational design.

2.
Chem Soc Rev ; 52(4): 1331-1381, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36723084

RESUMO

Organic semiconductors have received broad attention and research interest due to their unique integration of semiconducting properties with structural tunability, intrinsic flexibiltiy and low cost. In order to meet the requirements of organic electronic devices and their integrated circuits, p-type, n-type and ambipolar organic semiconductors are all necessary. However, due to the limitation in both material synthesis and device fabrication, the development of n-type and ambipolar materials is quite behind that of p-type materials. Recent development in synthetic methods of organic semiconductors greatly enriches the range of n-type and ambipolar materials. Moreover, the newly developed materials with multiple functions also put forward multi-functional device applications, including some emerging research areas. In this review, we give a timely summary on these impressive advances in n-type and ambipolar organic semiconductors with a special focus on their synthesis methods and advanced materials with enhanced properties of charge carrier mobility, integration of high mobility and strong emission and thermoelectric properties. Finally, multi-functional device applications are further demonstrated as an example of these developed n-type and ambipolar materials.

3.
Adv Mater ; 34(50): e2205945, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36201378

RESUMO

Neuromorphic engineering and artificial intelligence demands hardware elements that emulates synapse algorithms. During the last decade electrolyte-gated organic conjugated materials have been explored as a platform for artificial synapses for neuromorphic computing. Unlike biological synapses, in current devices the synaptic facilitation and depression are triggered by voltages with opposite polarity. To enhance the reliability and simplify the operation of the synapse without lowering its sophisticated functionality, here, an electrochemical-electret coupled organic synapse (EECS) possessing a reversible facilitation-to-depression switch, is devised. Electret charging counterbalances channel conductance changes due to electrochemical doping, inducing depression without inverting the gate polarity. Overall, EECS functions as a threshold-controlled synaptic switch ruled by its amplitude-dependent, dual-modal operation, which can well emulate information storage and erase as in real synapses. By varying the energy level offset between the channel material and the electret, the EECS's transition threshold can be adjusted for specific applications, e.g., imparting additional light responsiveness to the device operation. The novel device architecture represents a major step forward in the development of artificial organic synapses with increased functional complexity and it opens new perspectives toward the fabrication of abiotic neural networks with higher reliability, efficiency, and endurance.


Assuntos
Inteligência Artificial , Depressão , Reprodutibilidade dos Testes , Sinapses , Redes Neurais de Computação
4.
Adv Mater ; 33(20): e2008215, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33844869

RESUMO

MXenes are highly conductive layered materials that are attracting a great interest for high-performance opto-electronics, photonics, and energy applications.. Their non-covalent functionalization with ad hoc molecules enables the production of stable inks of 2D flakes to be processed in thin-films. Here, the formation of stable dispersions via the intercalation of Ti3 C2 Tx with didecyldimethyl ammonium bromide (DDAB) yielding Ti3 C2 Tx -DDAB, is demonstrated. Such functionalization modulates the properties of Ti3 C2 Tx , as evidenced by a 0.47 eV decrease of the work function. It is also shown that DDAB is a powerful n-dopant capable of enhancing electron mobility in conjugated polymers and 2D materials. When Ti3 C2 Tx -DDAB is blended with poly(diketopyrrolopyrrole-co-selenophene) [(PDPP-Se)], a simultaneous increase by 170% and 152% of the hole and electron field-effect mobilities, respectively, is observed, compared to the neat conjugated polymer, with values reaching 2.0 cm2 V-1 s-1 . By exploiting the balanced ambipolar transport of the Ti3 C2 Tx -DDAB/PDPP-Se hybrid, complementary metal-oxide-semiconductor (CMOS) logic gates are fabricated that display well-centered trip points and good noise margin (64.6% for inverter). The results demonstrate that intercalant engineering represents an efficient strategy to tune the electronic properties of Ti3 C2 Tx yielding functionalized MXenes for polymer transistors with unprecedented performances and functions.

5.
Angew Chem Int Ed Engl ; 60(27): 14902-14908, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33908682

RESUMO

Mesopolymers with high solubility, free of structural defects, and negligible batch-to-batch variation open a new avenue for organic optoelectronics. Organic light emitting transistors that combine the functions of organic light-emitting diodes and organic field-effect transistors. However, charge transport ability and light emitting strength are contradictory within one conjugated polymer. Herein, three low-molecular-weight mesopolymers with thienopyrroledione-benzothiadiazole repeating units (meso-TBTF) were obtained. The mesopolymers show strong solid-state emission and high ambipolar carrier mobility. The molecular weights of meso-TBTF can be tuned by polymerization temperature. The mesopolymers have photoluminescence quantum yields (PLQY) of about 50 % in solution and 10 % in solid state. Polymer light emitting diodes of this material are fabricated to explore its potential use in optoelectronic devices.

6.
Angew Chem Int Ed Engl ; 59(33): 14024-14028, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32396268

RESUMO

Aromatic diimides are one of the most important chromophores in the construction of n-type organic semiconductors, which lag far behind their p-type counterpart but are necessary for ambipolar transistors, p-n junctions and organic complementary circuits. Herein, we establish a facile one-pot domino synthetic protocol for aromatic diimides via palladium-catalyzed carbonylation of tetrabromo aromatic precursors. Taking tetrabromocorannulene (TBrCor) and tetrabromo-2,7-di-tert-butylpyrene (TBrPy) as the typical examples, we obtained diimide derivatives in yields of about 50 %, one order of magnitude higher than that of the traditional multi-step diimidization. As demonstrated in the case of corannulene diimide, the efficient diimidization not only allows the LUMO levels to be lowered significantly but also provides an ordered and closer packing structures, opening up possibilities to the development of n-type semiconducting materials based on a variety of aromatic systems.

7.
Nat Chem ; 11(3): 271-277, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30692659

RESUMO

Conjugated polymers are attractive components for plastic electronics, but their structural defects, low solubility and batch-to-batch variation-mainly in terms of molecular weight and dispersity-hinder practical applications. Here, we demonstrate that these issues can be circumvented by using conjugated mesopolymers, which have the advantages of both oligomers and polymers. A diketopyrrolopyrrole monomer and a benzothiadiazole derivative react through direct arylation polycondensation, promoted by sterically hindered adamantyl ligand coordinated palladium catalysts, to form mesopolymers. The reaction is facile, environmentally benign (it does not require tin or boron reagents) and occurs in high yields. The resulting mesopolymers have a strictly alternating donor-acceptor structure, without detectable homocoupling and ß-arylation defects, and exhibit number-averaged molecular weights (Mn) between 1 and 10 kDa. They also show good solution processability and have significantly enhanced electron mobilities, which makes them n-type and ambipolar semiconductors, with advantages over their polymer counterparts.

8.
Adv Mater ; 31(10): e1806010, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30656763

RESUMO

High mobility ambipolar conjugated polymers are seriously absent regardless their great potential for flexible and printed plastic devices and circuits. Here, ambipolar polymers with ultrahigh balanced hole and electron mobility are developed via a two-step CH activation strategy. Diketopyrrolopyrrole-benzothiadiazole-diketopyrrolopyrrole (DBD) and its copolymers with thiophene/selenophene units (short as PDBD-T and PDBD-Se) are used as examples. PDBD-Se exhibits highly efficient ambipolar transport with hole and electron mobility up to 8.90 and 7.71 cm2 V-1 s-1 in flexible organic field-effect transistors, presenting a milestone for ambipolar copolymer screening. Based on this performance metrics and good solubility, PDBD-Se is investigated as inkjet-printable semiconductor ink for organic complementary logic circuits. Under ambient processing, maximum hole and electron mobilities reach 6.70 and 4.30 cm2 V-1 s-1 , respectively. Printed complementary inverter and NAND gates with transition voltages near VDD /2 are fabricated, providing an easy-handling, general material for printed electronics and logic.

9.
ACS Nano ; 12(12): 12657-12664, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30412379

RESUMO

Organic spintronic devices present one of the most appealing technologies for future spintronic devices by taking advantage of the spin degree of freedom. Conjugated polymers are attractive for the exemplified device of organic spin valves (OSVs) due to their weak spin-orbit coupling, solution-processability, low production cost, and mechanical flexibility. However, the performance of polymer SVs is a matter of debate, as the evaporated top ferromagnetic (FM) electrode will penetrate into the organic layer during a typical fabrication process, especially in the device with an organic layer thickness of nanometers. It will cause a severe problem in controllable and reproducible spin manipulations, not to mention the clarification of the spin-dependent transport mechanism. Here, a universal, simple, and low-cost method based on a transferred electrode is developed for a polymer spin valve with stable and reliable state operation. It is demonstrated in an OSV device with a vertical structure of La2/3Sr1/3MnO3 (LSMO)/P3HT/AlO x/Co/Au that this approach not only builds a damage-free interface between magnetic electrodes and an organic spacer layer but also can be generalized for other devices with delicate active layers. Furthermore, a multistate writing and reading prototype is achieved on the premise of robust and quick magnetic response. The results reveal the importance of a spinterface and effective thickness of the organic layer in fundamental spintronic research and may lead to a strong potential in future flexible, large-area, and robust organic multifunctional circuits.

10.
Adv Mater ; 30(46): e1803961, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30252955

RESUMO

Human eyes undertake the majority of information assimilation for learning and memory. Transduction of the color and intensity of the incident light into neural signals is the main process for visual perception. Besides light-sensitive elements that function as rods and cones, artificial retinal systems require neuromorphic devices to transform light stimuli into post-synaptic signals. In terms of plasticity timescale, synapses with short-term plasticity (STP) and long-term potentiation (LTP) represent the neural foundation for experience acquisition and memory formation. Currently, electrochemical transistors are being researched as STP-LTP devices. However, their LTP timescale is confined to a second-to-minute level to give unreliable non-volatile memory. This issue limits multiple-plasticity synapses with tunable temporal characteristics and efficient sensory-memory systems. Herein, a ferroelectric/electrochemical modulated organic synapse is proposed, attaining three prototypes of plasticity: STP/LTP by electrochemical doping/de-doping and ferroelectric-LTP from dipole switching. The device supplements conventional electrochemical transistors with 10000-second-persistent non-volatile plasticity and unique threshold switching properties. As a proof-of-concept for an artificial visual-perception system, an ultraflexible, light-triggered organic neuromorphic device (LOND) is constructed by this synapse. The LOND transduces incident light signals with different frequency, intensity, and wavelength into synaptic signals, both volatile and non-volatile.

11.
Macromol Rapid Commun ; 39(15): e1800225, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29927024

RESUMO

A new asymmetric furan and thieno[3,2-b]thiophene flanked diketopyrrolopyrrole (TTFDPP) building block for conjugated polymers is designed and used to generate a donor-acceptor semiconducting polymer, poly[3-(furan-2-yl)-2,5-bis(2-octyldodecyl)-6-(thieno[3,2-b]thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-alt-thieno[3,2-b]thiophene] (abbreviated to PTTFDPP-TT), consisting of TTFDPP unit copolymerized with thieno[3,2-b]thiophene comonomer (TT), which is further synthesized. Results demonstrate that PTTFDPP-TT-based thin-film transistors in a bottom-gate bottom-contact device configuration exhibit typical hole-transporting property, with weak temperature dependence for charge carrier mobility from room temperature to 200 °C. In addition, the good solubility of PTTFDPP-TT due to the incorporation of a polar furan unit and an asymmetric conjugated structure makes it able to be solution processed with a less toxic nonchlorinated solvent such as toluene, demonstrating comparable performance with that prepared from chlorinated solution. These results suggest PTTFDPP-TT as a promising organic semiconductor candidate for annealing-free, environmentally benign, and less energy-consuming applications in large-area flexible organic electronic devices.


Assuntos
Furanos/química , Polímeros/síntese química , Pirróis/química , Tiofenos/química , Transistores Eletrônicos , Estrutura Molecular , Polímeros/química , Solventes/química
12.
Adv Mater ; 30(10)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29345386

RESUMO

Herein, the design and synthesis of novel π-extended quinoline-flanked diketopyrrolopyrrole (DPP) [abbreviated as QDPP] motifs and corresponding copolymers named PQDPP-T and PQDPP-2FT for high performing n-type organic field-effect transistors (OFETs) in flexible organic thin film devices are reported. Serving as DPP-flankers in backbones, quinoline is found to effectively tune copolymer optoelectric properties. Compared with TDPP and pyridine-flanked DPP (PyDPP) analogs, widened bandgaps and strengthened electron deficiency are achieved. Moreover, both hole and electron mobility are improved two orders of magnitude compared to those of PyDPP analogs (PPyDPP-T and PPyDPP-2FT). Notably, featuring an all-acceptor-incorporated backbone, PQDPP-2FT exhibits electron mobility of 6.04 cm2 V-1 s-1 , among the highest value in OFETs fabricated on flexible substrates to date. Moreover, due to the widened bandgap and strengthened electron deficiency of PQDPP, n-channel on/off ratio over 105 with suppressed hole transport is first realized in the ambipolar DPP-based copolymers.

13.
Adv Mater ; 29(34)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28692748

RESUMO

Organic electronics based on poly(vinylidenefluoride/trifluoroethylene) (P(VDF-TrFE)) dielectric is facing great challenges in flexible circuits. As one indispensable part of integrated circuits, there is an urgent demand for low-cost and easy-fabrication nonvolatile memory devices. A breakthrough is made on a novel ferroelectric random access memory cell (1T1T FeRAM cell) consisting of one selection transistor and one ferroelectric memory transistor in order to overcome the half-selection problem. Unlike complicated manufacturing using multiple dielectrics, this system simplifies 1T1T FeRAM cell fabrication using one common dielectric. To achieve this goal, a strategy for semiconductor/insulator (S/I) interface modulation is put forward and applied to nonhysteretic selection transistors with high performances for driving or addressing purposes. As a result, high hole mobility of 3.81 cm2 V-1 s-1 (average) for 2,6-diphenylanthracene (DPA) and electron mobility of 0.124 cm2 V-1 s-1 (average) for N,N'-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDI-FCN2 ) are obtained in selection transistors. In this work, we demonstrate this technology's potential for organic ferroelectric-based pixelated memory module fabrication.

14.
Adv Mater ; 29(32)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28639324

RESUMO

Human eyes use retina photoreceptor cells to absorb and distinguish photons from different wavelengths to construct an image. Mimicry of such a process and extension of its spectral response into the near-infrared (NIR) is indispensable for night surveillance, retinal prosthetics, and medical imaging applications. Currently, NIR organic photosensors demand optical filters to reduce visible interference, thus making filter-free and anti-visible NIR imaging a challenging task. To solve this limitation, a filter-free and conformal, retina-inspired NIR organic photosensor is presented. Featuring an integration of photosensing and floating-gate memory modules, the device possesses an acute color distinguishing capability. In general, the retina-like photosensor transduces NIR (850 nm) into nonvolatile memory and acts as a dynamic photoswitch under green light (550 nm). In doing this, a filter-free but color-distinguishing photosensor is demonstrated that selectively converts NIR optical signals into nonvolatile memory.

15.
Org Lett ; 18(16): 4040-3, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27504966

RESUMO

The ruthenium-catalyzed 1,6-enyne cyclization in the presence of bulky substituted terminal alkyne proceeds smoothly at room temperature to afford highly substituted five-membered cyclic compounds featuring a 1,5-enyne motif. Deuterium-labeling experiments showed that the key ruthenacyclopentene intermediate undergoes cleavage of metal-carbon bonds through the metal-assisted σ-bond metathesis reaction, thus leading to the formation of C(sp(2))-H and C(sp(3))-C(sp) bonds.

16.
Chemistry ; 20(37): 11703-6, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25100261

RESUMO

Aza(oxa)bicyclo[3.2.0]heptenes are accessed through the PtCl2 -catalyzed cycloisomerizations of heteroatom-tethered 1,6-enynes featuring a terminal alkyne and amide as the solvent. It is shown that the weak coordinating properties of the solvent and alkyl substituent(s) at the propargylic carbon atom favor the formation of cyclobutenes instead of other possible cycloisomerization products such as 1,3-diene derivatives or cyclopropane-fused heterocycles.

17.
Chemistry ; 18(16): 4859-65, 2012 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-22422619

RESUMO

Give me a ring? An efficient approach has been developed for the intramolecular decarboxylative coupling of arene carboxylic acids/esters with aryl bromides catalyzed by palladium (see scheme). From a synthetic viewpoint, this method is highly attractive because the catalyst loading is low, the optimized reaction conditions are mild, and the substrate scope is broad.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...