Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 18240, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521869

RESUMO

Beam self-cleaning (BSC) in graded-index (GRIN) multimode fibers (MMFs) has been recently reported by different research groups. Driven by the interplay between Kerr effect and beam self-imaging, BSC counteracts random mode coupling, and forces laser beams to recover a quasi-single mode profile at the output of GRIN fibers. Here we show that the associated self-induced spatiotemporal reshaping allows for improving the performances of nonlinear fluorescence (NF) microscopy and endoscopy using multimode optical fibers. We experimentally demonstrate that the beam brightness increase, induced by self-cleaning, enables two and three-photon imaging of biological samples with high spatial resolution. Temporal pulse shortening accompanying spatial beam clean-up enhances the output peak power, hence the efficiency of nonlinear imaging. We also show that spatiotemporal supercontinuum (SC) generation is well-suited for large-band NF imaging in visible and infrared domains. We substantiated our findings by multiphoton fluorescence imaging in both microscopy and endoscopy configurations.

2.
Sci Rep ; 10(1): 20481, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33235274

RESUMO

A low intensity light beam emerges from a graded-index, highly multimode optical fibre with a speckled shape, while at higher intensity the Kerr nonlinearity may induce a spontaneous spatial self-cleaning of the beam. Here, we reveal that we can generate two self-cleaned beams with a mutual coherence large enough to produce a clear stable fringe pattern at the output of a nonlinear interferometer. The two beams are pumped by the same input laser, yet are self-cleaned into independent multimode fibres. We thus prove that the self-cleaning mechanism preserves the beams' mutual coherence via a noise-free parametric process. While directly related to the initial pump coherence, the emergence of nonlinear spatial coherence is achieved without additional noise, even for self-cleaning obtained on different modes, and in spite of the fibre structural disorder originating from intrinsic imperfections or external perturbations. Our discovery may impact theoretical approaches on wave condensation, and open new opportunities for coherent beam combining.

3.
Opt Express ; 28(16): 24005-24021, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32752387

RESUMO

Beam self-imaging in nonlinear graded-index multimode optical fibers is of interest for many applications, such as implementing a fast saturable absorber mechanism in fiber lasers via multimode interference. We obtain a new exact solution for the nonlinear evolution of first and second order moments of a laser beam of arbitrary transverse shape carried by a graded-index multimode fiber. We have experimentally directly visualized the longitudinal evolution of beam self-imaging by means of femtosecond laser pulse propagation in both the anomalous and the normal dispersion regime of a standard telecom graded-index multimode optical fiber. Light scattering out of the fiber core via visible photo-luminescence emission permits us to directly measure the self-imaging period and the beam dynamics. Spatial shift and splitting of the self-imaging process under the action of self-focusing are also revealed.

4.
Opt Express ; 28(14): 20473-20488, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32680106

RESUMO

The process of high-energy soliton fission is experimentally and numerically investigated in a graded-index multimode fiber. Fission dynamics is analyzed by comparing experimental observations and simulations. A novel nonlinear propagation regime is observed, where solitons produced by the fission have a nearly constant Raman wavelength shift and same pulse width over a wide range of soliton energies.

5.
Opt Lett ; 44(1): 171-174, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30645577

RESUMO

We experimentally study polarization dynamics of Kerr beam self-cleaning in a graded-index multimode optical fiber. We show that spatial beam cleaning is accompanied by nonlinear polarization rotation and a significant increase of the degree of linear polarization.

6.
Opt Express ; 23(18): 23053-8, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26368409

RESUMO

We demonstrate a passive mode-locked Er:Yb doped double-clad fiber laser using a microfiber-based topological insulator (Bi(2)Se(3)) saturable absorber (TISA). By optimizing the cavity loss and output coupling ratio, the mode-locked fiber laser can operate in L-band with high average output power. With the highest pump power of 5 W, 91st harmonic mode locking of soliton bunches with average output power of 308 mW was obtained. This is the first report that the TISA based erbium-doped fiber laser operating above 1.6 µm and is also the highest output power yet reported in TISA based passive mode-locked fiber laser.

7.
Opt Lett ; 40(7): 1153-6, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25831280

RESUMO

We demonstrate a widely tunable Er:Yb-doped double-clad multiple-soliton fiber laser based on nonlinear polarization rotation (NPR). Based on both an artificial birefringent filtering effect of the cavity and population inversion related gain variation, the central wavelength can be continuously tuned over 75 nm range (1545-1620 nm). Wavelength tunability is achieved by controlling both the linear loss of the cavity and the polarization controllers (PCs). This is the widest tunable range yet reported in tunable passively mode-locked erbium-doped fiber lasers.

8.
Opt Lett ; 39(22): 6383-6, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25490474

RESUMO

Based on the control of the linear losses of the cavity, we demonstrate the possibility to achieve filterless laser emission above 1.6 µm, from a C-band double-clad Er:Yb doped fiber amplifier. The concept is validated in both continuous wave and mode-locked regimes, using a figure-of-eight geometry. A unidirectional ring cavity is also tested in the continuous regime. Spectral properties of laser emissions are characterized as a function of the intracavity linear losses.

9.
Opt Express ; 22(24): 29921-6, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25606922

RESUMO

We demonstrate a passive mode-locked Er:Yb doped double-clad ring fiber laser based on graphene saturable absorber. By adjusting the polarization controller and minimizing the cavity loss, the laser can operate at hundreds of harmonics of the fundamental repetition frequency of the resonator with the central wavelength of 1.61 µm. Up to 683rd harmonic (which corresponds to 5.882 GHz) of the fundamental repetition frequency was achieved.


Assuntos
Absorção de Radiação , Grafite/química , Lasers , Fibras Ópticas , Ondas de Rádio , Fatores de Tempo
10.
Opt Lett ; 36(21): 4239-41, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22048377

RESUMO

We report experimental observation of passive harmonic mode locking (HML) in which the basic pattern is a soliton crystal. Several crystal states were generated from an initial large bound state by increasing the pump power. The soliton crystals are identical and progressively span along the cavity to finally take a regular spacing leading to HML of solitons crystal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...