Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15546, 2024 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969785

RESUMO

Plant growth-promoting rhizobacteria (PGPR) boost crop yields and reduce environmental pressures through biofilm formation in natural climates. Recently, biofilm-based root colonization by these microorganisms has emerged as a promising strategy for agricultural enhancement. The current work aims to characterize biofilm-forming rhizobacteria for wheat growth and yield enhancement. For this, native rhizobacteria were isolated from the wheat rhizosphere and ten isolates were characterized for plant growth promoting traits and biofilm production under axenic conditions. Among these ten isolates, five were identified as potential biofilm-producing PGPR based on in vitro assays for plant growth-promoting traits. These were further evaluated under controlled and field conditions for their impact on wheat growth and yield attributes. Surface-enhanced Raman spectroscopy analysis further indicated that the biochemical composition of the biofilm produced by the selected bacterial strains includes proteins, carbohydrates, lipids, amino acids, and nucleic acids (DNA/RNA). Inoculated plants in growth chamber resulted in larger roots, shoots, and increase in fresh biomass than controls. Similarly, significant increases in plant height (13.3, 16.7%), grain yield (29.6, 17.5%), number of tillers (18.7, 34.8%), nitrogen content (58.8, 48.1%), and phosphorus content (63.0, 51.0%) in grains were observed in both pot and field trials, respectively. The two most promising biofilm-producing isolates were identified through 16 s rRNA partial gene sequencing as Brucella sp. (BF10), Lysinibacillus macroides (BF15). Moreover, leaf pigmentation and relative water contents were significantly increased in all treated plants. Taken together, our results revealed that biofilm forming PGPR can boost crop productivity by enhancing growth and physiological responses and thus aid in sustainable agriculture.


Assuntos
Biofilmes , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Triticum , Triticum/microbiologia , Triticum/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Desenvolvimento Vegetal , Biomassa
2.
Environ Geochem Health ; 45(12): 8911-8927, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37354255

RESUMO

Irrigation of food crops with untreated wastewater leads to the accumulation of heavy metals in their edible parts. Exposure to toxic elements through consumption of contaminated vegetables even at very low concentration is becoming a serious problem for human health in many countries. This issue of heavy metals contamination needs great attention especially in Pakistan where irrigation by wastewater has become a common practice in urban and periurban areas. The present study was conducted to assess the contamination of different heavy metals including nickel (Ni), cadmium (Cd), lead (Pb) and chromium (Cr) in vegetables irrigated with wastewater in different districts of Punjab (Pakistan) like, Faisalabad, Lahore, Gujranwala, Sargodha, Sahiwal, Multan, Rawalpindi and Bahawalpur during years 2016-2019. The maximum contamination factor (Ni, 1.39; Cd, 5.86; Pb, 3.99; Cr, 2.24), pollution load index (2.92) and degree of contamination (13.48) were observed in wastewater irrigated agricultural soils of district Gujranwala as compared to other districts. Mean metal concentration in vegetables grown with untreated wastewater and transfer factor varied with plant type, frequency of irrigation and soils types/series of different districts of Punjab. The highest metal contamination was observed in Gujranwala where 44% vegetable samples were contaminated with Ni, 87% with Cd, 97% with Pb and 88% with Cr. Radar analysis and hierarchical cluster analysis showed that mustard leaves, spinach and lettuce were more contaminated vegetables compared to other vegetables. This study contributes to the evidence-based conclusion that cultivation of vegetable with untreated wastewater should be prohibited and required treatment of wastewater is needed.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Águas Residuárias , Verduras , Cádmio/análise , Paquistão , Chumbo/análise , Irrigação Agrícola , Monitoramento Ambiental , Contaminação de Alimentos/análise , Poluentes do Solo/análise , Metais Pesados/análise , Solo , Cromo/análise , Níquel/análise , Medição de Risco
3.
Physiol Plant ; 173(1): 191-200, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33502791

RESUMO

The contamination of agricultural soils with cadmium (Cd) is one of the serious worldwide concerns for food security. Biochar and organic manures have been known for enhancing plant growth and minimizing toxic trace element stress in plants. However, less is known about the effect of different organic amendments on Cd and uptake of essential nutrients by wheat. Thus, the effects of rice straw biochar (RSB), maize stalk biochar (MSB), farmyard manure (FYM), and pressmud (PRM) at a rate of 1% w/w were tested for Cd immobilization in soil and mineral nutrient availability to wheat crop grown in Cd-spiked soil (6.0 mg kg1 ). The amendments were added in Cd-spiked soil before 12 days of seed sowing and wheat plants were harvested after maturity (115 days after sowing). The findings revealed that the use of amendments improved the number of grains per spike, straw and grain yield of wheat relative to control treatment. The treatments minimized the Cd and enhanced the contents of zinc (Zn), nitrogen (N), phosphorus (P), and potassium (K) in the leaves and grain of the wheat plants. Cadmium concentrations decreased by 35, 38, 68, and 63% in wheat grain, and grain yield increased by 19, 31, 68, and 58% with the application of FYM, PRM, MSB, and RSB, respectively. Overall, the application of MSB was more efficient in decreasing Cd concentrations in leaf and grains of wheat as compared to other conventional organic amendments.


Assuntos
Cádmio , Poluentes do Solo , Carvão Vegetal , Fazendas , Esterco , Nutrientes , Solo , Triticum
4.
Environ Sci Pollut Res Int ; 26(17): 17438-17449, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31020532

RESUMO

Soil textural composition may be important to control arsenic (As) behavior in soil and movement to plant. Two independent parallel experiments comprising of five As levels (0, 50, 100, 150, and 200 mg As kg-1 soil) and three soil textural types (sandy, loamy, and clayey) were designed for determining As fractionation in soils and its consequential effects on growth, yield, and physiological characteristics of sunflower (Helianthus annuus L.). Six As fractions, i.e., NH4Cl-extractable, NH4F-extractable, NaOH-extractable, H2SO4-extractable, H2O2-extractable, and HNO3-extractable, were determined. On an average, NH4Cl-extractable As (the most phytoavailable among the extracted fractions) was 48.9, 19.8, and 6.6% of the total As while the bioaccumulation factor for root ranged between 1.9 and 9.5, 1.8 and 4.4, and 0.8 and 2.1 for sandy, loamy, and clayey textured soils, respectively. There was an increase of 8.3, 5.6, and 6.0 times in malondialdehyde with a subsequent reduction in photosynthetic rate by 53.3, 42.7, and 38.0% and achene yield 90.0, 87.1, and 85.5% in sandy, loamy, and clayey textured soils, respectively at 200 mg As kg-1 as compared with the control. Antioxidant enzyme activities were increased with increasing As addition, and maximum activities were found at 150 mg As kg-1, where catalase activities were 377.7, 341.6, and 292.0%; peroxidase 788.5, 758.6, and 737.0%; and superoxide dismutase 235.7, 191.8, and 177.2% higher in sandy, loamy, and clayey textured soils, respectively as compared with the control. In conclusion, As fractionation was markedly influenced by soil texture, and toxic effects of As on growth, yield and physiological characteristics of sunflower were maximum in sandy followed by loamy and clayey textured soils in descending order.


Assuntos
Arsênio/química , Helianthus/crescimento & desenvolvimento , Peróxido de Hidrogênio/química , Solo/química , Arsênio/farmacologia , Peróxido de Hidrogênio/farmacologia
5.
Environ Geochem Health ; 39(4): 707-728, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27318826

RESUMO

In the developing world, vegetables are commonly grown in suburban areas irrigated with untreated wastewater containing potentially harmful elements (PHEs). In Pakistan, there is no published work on the bioaccessibility aspect of PHEs and dietary minerals (DMs) in sewage-irrigated soil or the vegetables grown on such soils in Pakistan. Several industrial districts of Pakistan were selected for assessment of the risk associated with the ingestion of vegetables grown over sewage-irrigated soils. Both the total and bioaccessible fraction of PHEs (Cd, Co, Cr, Ni, and Pb) and DMs (Fe, Cu, Mn, Zn, Ca, Mg, and I) in soils and vegetable samples were measured. The concentrations of these PHEs and DMs in sewage-irrigated and control soils were below published upper threshold limits. However, compared to control soils, sewage irrigation over the years decreased soil pH (7.7 vs 8.1) and enhanced dissolved organic carbon (1.8 vs 0.8 %), which could enhance the phyto-availability of PHEs and DMs to crops. Of the PHEs and DMs, the highest transfer factor (soil to plant) was noted for Cd and Ca, respectively. Concentrations of PHEs in most of the sewage-irrigated vegetables were below the published upper threshold limits, except for Cd in the fruiting portion of eggplant and bell pepper (0.06-0.08 mg/kg Cd, dry weight) at three locations in Gujarat and Kasur districts. The bioaccessible fraction of PHEs can reduce the context of dietary intake measurements compared to total concentrations, but differences between both measurements were not significant for Cd. Since the soils of the sampled districts are not overly contaminated compared to control sites, vegetables grown over sewage-irrigated soils would provide an opportunity to harvest mineral-rich vegetables potentially providing consumers 62, 60, 12, 104, and 63 % higher dietary intake of Cu, Mn, Zn, Ca, and Mg, respectively. Based on Fe and vanadium correlations in vegetables, it is inferred that a significant proportion of total dietary Fe intake could be contributed by soil particles adhered to the consumable portion of vegetables. Faecal sterol ratios were used to identify and distinguish the source of faecal contamination in soils from Gujranwala, Gujarat, and Lahore districts, confirming the presence of human-derived sewage biomarkers at different stages of environmental alteration. A strong correlation of some metals with soil organic matter concentration was observed, but none with sewage biomarkers.


Assuntos
Irrigação Agrícola/métodos , Metais Pesados/análise , Poluentes do Solo/análise , Solo/química , Elementos de Transição/análise , Verduras/química , Águas Residuárias/química , Monitoramento Ambiental , Fezes/química , Humanos , Concentração de Íons de Hidrogênio , Metais Pesados/administração & dosagem , Metais Pesados/farmacocinética , Paquistão , Medição de Risco , Poluentes do Solo/farmacocinética , Esteróis/análise , Elementos de Transição/administração & dosagem , Elementos de Transição/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...