Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 8(5): e1002690, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22589735

RESUMO

Defects of atrial and ventricular septation are the most frequent form of congenital heart disease, accounting for almost 50% of all cases. We previously reported that a heterozygous G296S missense mutation of GATA4 caused atrial and ventricular septal defects and pulmonary valve stenosis in humans. GATA4 encodes a cardiac transcription factor, and when deleted in mice it results in cardiac bifida and lethality by embryonic day (E)9.5. In vitro, the mutant GATA4 protein has a reduced DNA binding affinity and transcriptional activity and abolishes a physical interaction with TBX5, a transcription factor critical for normal heart formation. To characterize the mutation in vivo, we generated mice harboring the same mutation, Gata4 G295S. Mice homozygous for the Gata4 G295S mutant allele have normal ventral body patterning and heart looping, but have a thin ventricular myocardium, single ventricular chamber, and lethality by E11.5. While heterozygous Gata4 G295S mutant mice are viable, a subset of these mice have semilunar valve stenosis and small defects of the atrial septum. Gene expression studies of homozygous mutant mice suggest the G295S protein can sufficiently activate downstream targets of Gata4 in the endoderm but not in the developing heart. Cardiomyocyte proliferation deficits and decreased cardiac expression of CCND2, a member of the cyclin family and a direct target of Gata4, were found in embryos both homozygous and heterozygous for the Gata4 G295S allele. To further define functions of the Gata4 G295S mutation in vivo, compound mutant mice were generated in which specific cell lineages harbored both the Gata4 G295S mutant and Gata4 null alleles. Examination of these mice demonstrated that the Gata4 G295S protein has functional deficits in early myocardial development. In summary, the Gata4 G295S mutation functions as a hypomorph in vivo and leads to defects in cardiomyocyte proliferation during embryogenesis, which may contribute to the development of congenital heart defects in humans.


Assuntos
Septo Interatrial , Proliferação de Células , Fator de Transcrição GATA4 , Cardiopatias Congênitas , Ventrículos do Coração , Miócitos Cardíacos , Animais , Septo Interatrial/metabolismo , Septo Interatrial/fisiopatologia , Ciclina D2/metabolismo , Desenvolvimento Embrionário/genética , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/fisiopatologia , Ventrículos do Coração/crescimento & desenvolvimento , Ventrículos do Coração/metabolismo , Humanos , Camundongos , Camundongos Mutantes , Mutação , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
2.
PLoS One ; 6(11): e27743, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22110751

RESUMO

Aortic valve calcification is the most common form of valvular heart disease, but the mechanisms of calcific aortic valve disease (CAVD) are unknown. NOTCH1 mutations are associated with aortic valve malformations and adult-onset calcification in families with inherited disease. The Notch signaling pathway is critical for multiple cell differentiation processes, but its role in the development of CAVD is not well understood. The aim of this study was to investigate the molecular changes that occur with inhibition of Notch signaling in the aortic valve. Notch signaling pathway members are expressed in adult aortic valve cusps, and examination of diseased human aortic valves revealed decreased expression of NOTCH1 in areas of calcium deposition. To identify downstream mediators of Notch1, we examined gene expression changes that occur with chemical inhibition of Notch signaling in rat aortic valve interstitial cells (AVICs). We found significant downregulation of Sox9 along with several cartilage-specific genes that were direct targets of the transcription factor, Sox9. Loss of Sox9 expression has been published to be associated with aortic valve calcification. Utilizing an in vitro porcine aortic valve calcification model system, inhibition of Notch activity resulted in accelerated calcification while stimulation of Notch signaling attenuated the calcific process. Finally, the addition of Sox9 was able to prevent the calcification of porcine AVICs that occurs with Notch inhibition. In conclusion, loss of Notch signaling contributes to aortic valve calcification via a Sox9-dependent mechanism.


Assuntos
Valva Aórtica/metabolismo , Calcinose/metabolismo , Doenças das Valvas Cardíacas/metabolismo , Receptor Notch1/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Valva Aórtica/patologia , Células COS , Calcinose/patologia , Proteínas de Ciclo Celular/metabolismo , Chlorocebus aethiops , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Doenças das Valvas Cardíacas/patologia , Humanos , Pessoa de Meia-Idade , Transporte Proteico , Ratos , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais , Suínos , Transcrição Gênica
3.
Dev Biol ; 326(2): 368-77, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19084512

RESUMO

Congenital heart disease is the most common type of birth defect with an incidence of 1%. Previously, we described a point mutation in GATA4 that segregated with cardiac defects in a family with autosomal dominant disease. The mutation (G296S) exhibited biochemical deficits and disrupted a novel interaction between Gata4 and Tbx5. To determine if Gata4 and Tbx5 genetically interact in vivo, we generated mice heterozygous for both alleles. We found that nearly 100% of mice heterozygous for Gata4 and Tbx5 were embryonic or neonatal lethal and had complete atrioventricular (AV) septal defects with a single AV valve and myocardial thinning. Consistent with this phenotype, Gata4 and Tbx5 are co-expressed in the developing endocardial cushions and myocardium. In mutant embryos, cardiomyocyte proliferation deficits were identified compatible with the myocardial hypoplasia. Similar to Gata4, Gata6 and Tbx5 are co-expressed in the embryonic heart, and the transcription factors synergistically activate the atrial natiuretic factor promoter. We demonstrate a genetic interaction between Gata6 and Tbx5 with an incompletely penetrant phenotype of neonatal lethality and thin myocardium. Gene expression analyses were performed on both sets of compound heterozygotes and demonstrated downregulation of alpha-myosin heavy chain only in Gata4/Tbx5 heterozygotes. These findings highlight the unique genetic interactions of Gata4 and Gata6 with Tbx5 for normal cardiac morphogenesis in vivo.


Assuntos
Fator de Transcrição GATA4/metabolismo , Fator de Transcrição GATA6/metabolismo , Cardiopatias Congênitas/genética , Coração/embriologia , Coração/crescimento & desenvolvimento , Proteínas com Domínio T/metabolismo , Alelos , Animais , Perda do Embrião , Feminino , Retardo do Crescimento Fetal/genética , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA6/genética , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Células HeLa , Coração/anatomia & histologia , Cardiopatias Congênitas/patologia , Humanos , Camundongos , Mutação , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Gravidez , Proteínas com Domínio T/genética
4.
Pediatr Res ; 64(4): 358-63, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18535492

RESUMO

Congenital heart disease (CHD) is the most common type of birth defect, and the etiology of most cases is unknown. CHD often occurs in association with other birth malformations, and only in a minority are disease-causing chromosomal abnormalities identified. We hypothesized that children with CHD and additional birth malformations have cryptic chromosomal abnormalities that might be uncovered using recently developed DNA microarray-based methodologies. We recruited 20 children with diverse forms of CHD and additional birth defects who had no chromosomal abnormality identified by conventional cytogenetic testing. Using whole-genome array comparative genomic hybridization, we screened this population, along with a matched control population with isolated heart defects, for chromosomal copy number variations. We discovered disease-causing cryptic chromosomal abnormalities in five children with CHD and additional birth defects versus none with isolated CHD. The chromosomal abnormalities included three unbalanced translocations, one interstitial duplication, and one interstitial deletion. The genetic abnormalities were predominantly identified in children with CHD and a neurologic abnormality. Our results suggest that a significant percentage of children with CHD and neurologic abnormalities harbor subtle chromosomal abnormalities. We propose that children who meet these two criteria should receive more extensive genetic testing to detect potential cryptic chromosomal abnormalities.


Assuntos
Aberrações Cromossômicas , Cardiopatias Congênitas/genética , Hibridização Genômica Comparativa , Feminino , Humanos , Hibridização in Situ Fluorescente , Masculino , Análise em Microsséries
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...