Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 121(2): 784-794, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37926950

RESUMO

Efficient co-utilization of mixed sugar feedstocks remains a biomanufacturing challenge, thus motivating ongoing efforts to engineer microbes for improved conversion of glucose-xylose mixtures. This study focuses on enhancing phenylalanine production by engineering Escherichia coli to efficiently co-utilize glucose and xylose. Flux balance analysis identified E4P flux as a bottleneck which could be alleviated by increasing the xylose-to-glucose flux ratio. A mutant copy of the xylose-specific activator (XylR) was then introduced into the phenylalanine-overproducing E. coli NST74, which relieved carbon catabolite repression and enabled efficient glucose-xylose co-utilization. Carbon contribution analysis through 13 C-fingerprinting showed a higher preference for xylose in the engineered strain (NST74X), suggesting superior catabolism of xylose relative to glucose. As a result, NST74X produced 1.76 g/L phenylalanine from a model glucose-xylose mixture; a threefold increase over NST74. Then, using biomass-derived sugars, NST74X produced 1.2 g/L phenylalanine, representing a 1.9-fold increase over NST74. Notably, and consistent with the carbon contribution analysis, the xylR* mutation resulted in a fourfold greater maximum rate of xylose consumption without significantly impeding the maximum rate of total sugar consumption (0.87 vs. 0.70 g/L-h). This study presents a novel strategy for enhancing phenylalanine production through the co-utilization of glucose and xylose in aerobic E. coli cultures, and highlights the potential synergistic benefits associated with using substrate mixtures over single substrates when targeting specific products.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Açúcares/metabolismo , Xilose/metabolismo , Biomassa , Fermentação , Glucose/metabolismo , Aminoácidos Aromáticos/metabolismo , Fenilalanina/metabolismo , Carbono/metabolismo , Fatores de Transcrição/genética , Proteínas de Escherichia coli/metabolismo
2.
Biotechnol Biofuels Bioprod ; 16(1): 190, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057826

RESUMO

BACKGROUND: Significant genetic diversity exists across Saccharomyces strains. Natural isolates and domesticated brewery and industrial strains are typically more robust than laboratory strains when challenged with inhibitory lignocellulosic hydrolysates. These strains also contain genes that are not present in lab strains and likely contribute to their superior inhibitor tolerance. However, many of these strains have poor sporulation efficiencies and low spore viability making subsequent gene analysis, further metabolic engineering, and genomic analyses of the strains challenging. This work aimed to develop an inhibitor tolerant haploid with stable mating type from S. cerevisiae YB-2625, which was originally isolated from bagasse. RESULTS: Haploid spores isolated from four tetrads from strain YB-2625 were tested for tolerance to furfural and HMF. Due to natural mutations present in the HO-endonuclease, all haploid strains maintained a stable mating type. One of the haploids, YRH1946, did not flocculate and showed enhanced tolerance to furfural and HMF. The tolerant haploid strain was further engineered for xylose fermentation by integration of the genes for xylose metabolism at two separate genomic locations (ho∆ and pho13∆). In fermentations supplemented with inhibitors from acid hydrolyzed corn stover, the engineered haploid strain derived from YB-2625 was able to ferment all of the glucose and 19% of the xylose, whereas the engineered lab strains performed poorly in fermentations. CONCLUSIONS: Understanding the molecular mechanisms of inhibitor tolerance will aid in developing strains with improved growth and fermentation performance using biomass-derived sugars. The inhibitor tolerant, xylose fermenting, haploid strain described in this work has potential to serve as a platform strain for identifying pathways required for inhibitor tolerance, and for metabolic engineering to produce fuels and chemicals from undiluted lignocellulosic hydrolysates.

3.
Water Resour Res ; 58(8): e2022WR031940, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36249278

RESUMO

Data assimilation (DA) is a powerful tool to optimally combine uncertain model simulations and observations. Among DA techniques, the particle filter (PF) has gained attention for its capacity to deal with nonlinear systems and for its relaxation of the Gaussian assumption. However, the PF may suffer from degeneracy and sample impoverishment. In this study, we propose an innovative approach, based on a tempered particle filter (TPF), aiming at mitigating PFs issues, thus extending over time the assimilation benefits. Probabilistic flood maps derived from synthetic aperture radar data are assimilated into a flood forecasting model through an iterative process including a particle mutation in order to keep diversity within the ensemble. Results show an improvement of the model forecasts accuracy, with respect to the Open Loop: on average the root mean square error (RMSE) of water levels decrease by 80% at the assimilation time and by 60% 2 days after the assimilation. A comparison with the Sequential Importance Sampling (SIS) is carried out showing that although SIS performances are generally comparable to the TPF ones at the assimilation time, they tend to decrease more quickly. For instance, on average TPF-based RMSE are 20% lower compared to the SIS-based ones 2 days after the assimilation. The application of the TPF determines higher critical success index values compared to the SIS. On average the increase in performances lasts for almost 3 days after the assimilation. Our study provides evidence that the application of the variant of the TPF enables more persistent benefits compared to the SIS.

4.
Biotechnol Rep (Amst) ; 33: e00697, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35036336

RESUMO

Expression of a new fluorescent reporter protein called mNeonGreen, that is not based on the jellyfish green fluorescent protein (GFP) sequence, shows increased brightness and folding speed compared to enhanced GFP. However, in vivo brightness of mNeonGreen and its yeast-optimized variant ymNeonGreen in S. cerevisiae is lower than expected, limiting the use of this high quantum yield, fast-folding reporter in budding yeast. This study shows that secondary RNA structure near the start codon in the ymNeonGreen ORF inhibits expression in S. cerevisiae. Removing secondary structure, without altering the ymNeonGreen protein sequence, led to a 2 and 4-fold increase in fluorescence when expressed in S. cerevisiae and E. coli, respectively. In S. cerevisiae, increased fluorescence was seen with strong and weak promoters and led to higher transcript levels suggesting greater transcript stability and improved expression in the absence of stable secondary RNA structure near the start codon.

5.
Biotechnol Prog ; 37(2): e3094, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33085224

RESUMO

Numerous transcription factor genes associated with stress response are upregulated in Saccharomyces cerevisiae grown in the presence of inhibitors that result from pretreatment processes to unlock simple sugars from biomass. To determine if overexpression of transcription factors could improve inhibitor tolerance in robust S. cerevisiae environmental isolates as has been demonstrated in S. cerevisiae haploid laboratory strains, transcription factors were overexpressed at three different expression levels in three S. cerevisiae environmental isolates. Overexpression of the YAP1 transcription factor in these isolates did not lead to increased growth rate or reduced lag in growth, and in some cases was detrimental, when grown in the presence of either lignocellulosic hydrolysates or furfural and 5-hydroxymethyl furfural individually. The expressed Yap1p localized correctly and the expression construct improved inhibitor tolerance of a laboratory strain as previously reported, indicating that lack of improvement in the environmental isolates was due to factors other than nonfunctional expression constructs or mis-folded protein. Additional stress-related transcription factors, MSN2, MSN4, HSF1, PDR1, and RPN4, were also overexpressed at three different expression levels and all failed to improve inhibitor tolerance. Transcription factor overexpression alone is unlikely to be a viable route toward increased inhibitor tolerance of robust environmental S. cerevisiae strains.


Assuntos
Lignina/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/genética , Estresse Fisiológico , Fatores de Transcrição/genética
6.
FEMS Microbiol Ecol ; 96(1)2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31769802

RESUMO

Coniochaeta species are versatile ascomycetes that have great capacity to deconstruct lignocellulose. Here, we explore the transcriptome of Coniochaeta sp. strain 2T2.1 from wheat straw-driven cultures with the fungus growing alone or as a member of a synthetic microbial consortium with Sphingobacterium multivorum w15 and Citrobacter freundii so4. The differential expression profiles of carbohydrate-active enzymes indicated an onset of (hemi)cellulose degradation by 2T2.1 during the initial 24 hours of incubation. Within the tripartite consortium, 63 transcripts of strain 2T2.1 were differentially expressed at this time point. The presence of the two bacteria significantly upregulated the expression of one galactose oxidase, one GH79-like enzyme, one multidrug transporter, one laccase-like protein (AA1 family) and two bilirubin oxidases, suggesting that inter-kingdom interactions (e.g. amensalism) take place within this microbial consortium. Overexpression of multicopper oxidases indicated that strain 2T2.1 may be involved in lignin depolymerization (a trait of enzymatic synergism), while S. multivorum and C. freundii have the metabolic potential to deconstruct arabinoxylan. Under the conditions applied, 2T2.1 appears to be a better degrader of wheat straw when the two bacteria are absent. This conclusion is supported by the observed suppression of its (hemi)cellulolytic arsenal and lower degradation percentages within the microbial consortium.


Assuntos
Ascomicetos/metabolismo , Lignina/metabolismo , Consórcios Microbianos , Ascomicetos/enzimologia , Ascomicetos/genética , Citrobacter freundii/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Sphingobacterium/metabolismo , Triticum/metabolismo
7.
Biotechnol Biofuels ; 12: 229, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572496

RESUMO

BACKGROUND: Particular species of the genus Coniochaeta (Sordariomycetes) exhibit great potential for bioabatement of furanic compounds and have been identified as an underexplored source of novel lignocellulolytic enzymes, especially Coniochaeta ligniaria. However, there is a lack of information about their genomic features and metabolic capabilities. Here, we report the first in-depth genome/transcriptome survey of a Coniochaeta species (strain 2T2.1). RESULTS: The genome of Coniochaeta sp. strain 2T2.1 has a size of 74.53 Mbp and contains 24,735 protein-encoding genes. Interestingly, we detected a genome expansion event, resulting ~ 98% of the assembly being duplicated with 91.9% average nucleotide identity between the duplicated regions. The lack of gene loss, as well as the high divergence and strong genome-wide signatures of purifying selection between copies indicates that this is likely a recent duplication, which arose through hybridization between two related Coniochaeta-like species (allopolyploidization). Phylogenomic analysis revealed that 2T2.1 is related Coniochaeta sp. PMI546 and Lecythophora sp. AK0013, which both occur endophytically. Based on carbohydrate-active enzyme (CAZy) annotation, we observed that even after in silico removal of its duplicated content, the 2T2.1 genome contains exceptional lignocellulolytic machinery. Moreover, transcriptomic data reveal the overexpression of proteins affiliated to CAZy families GH11, GH10 (endoxylanases), CE5, CE1 (xylan esterases), GH62, GH51 (α-l-arabinofuranosidases), GH12, GH7 (cellulases), and AA9 (lytic polysaccharide monoxygenases) when the fungus was grown on wheat straw compared with glucose as the sole carbon source. CONCLUSIONS: We provide data that suggest that a recent hybridization between the genomes of related species may have given rise to Coniochaeta sp. 2T2.1. Moreover, our results reveal that the degradation of arabinoxylan, xyloglucan and cellulose are key metabolic processes in strain 2T2.1 growing on wheat straw. Different genes for key lignocellulolytic enzymes were identified, which can be starting points for production, characterization and/or supplementation of enzyme cocktails used in saccharification of agricultural residues. Our findings represent first steps that enable a better understanding of the reticulate evolution and "eco-enzymology" of lignocellulolytic Coniochaeta species.

8.
N Biotechnol ; 53: 16-23, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31228662

RESUMO

Synthetic hybrid promoters for xylose-regulated gene expression in the yeast Saccharomyces cerevisiae have recently been developed. However, the narrow range of expression level from these new hybrid promoters limits their utility for pathway optimization in engineered strains. To expand the range of xylose-regulated gene expression, a series of expression vectors was created using a xylose derepressible promoter (PXYL) and varied termination regions from several S. cerevisiae genes. The new set of vectors showed a 26-fold range of gene expression under inducing conditions and a 13-fold average induction due to xylose. In the presence of the XylR repressor, gene expression was very sensitive to xylose concentration and full induction was observed with 0.10 g/L xylose. In the absence of XylR, gene expression from the vector set did not require xylose and was constitutive over a similar 26-fold range of expression. These results show that the vectors are extremely versatile for constitutive expression as well as for fine-tuning both the timing of gene expression and expression level using xylose as an inexpensive inducer.


Assuntos
Regulação Bacteriana da Expressão Gênica/genética , Saccharomyces cerevisiae/genética , Xilose/metabolismo , Células Cultivadas , Vetores Genéticos/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo
9.
Biol Methods Protoc ; 4(1): bpz001, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32395621

RESUMO

Coniochaeta sp. strain 2T2.1 is a key member of a microbial consortium that degrades lignocellulosic biomass. Due to its ecological niche and ability to also grow in pure culture on wheat straw, protocols for transformation and antibiotic selection of the strain were established. Hygromycin was found to be a reliable selectable transformation marker, and the mammalian codon-optimized green fluorescent protein was expressed and used to visualize fluorescence in transformed cells of strain 2T2.1.

10.
Biol Methods Protoc ; 3(1): bpx012, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-32161794

RESUMO

A reporter gene encoding green fluorescent protein (GFP) was introduced into the ascomycete Coniochaeta ligniaria NRRL30616, and fluorescence of cultures was monitored as a measure of cell growth. Fluorescence in the GFP-expressing strain was measured during growth of cells in defined and complex media as well as in the liquor derived from pretreatment of corn stover, an agricultural residue. Fluorescence mirrored growth of cultures, as measured by optical density and counts of colony forming units. Because traditional methods to monitor growth cannot be used in biomass liquors due to its fibrous, dark-colored nature, the speed and convenience of using GFP to monitor growth is advantageous. Fluorescence of cultures in biomass hydrolysate also correlated with the concentration of furfural in hydrolysate. Furfural and other compounds, present in hydrolysate due to physico-chemical pretreatment of biomass, are inhibitory to fermenting microbes. Therefore, measurement of fluorescence in GFP-expressing C. ligniaria is a proxy for measures of microbial growth and furfural consumption, and serves as a convenient indicator of metabolism of fermentation inhibitors in biomass hydrolysate.

11.
Genome Announc ; 5(4)2017 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-28126934

RESUMO

Here, we report the first draft genome sequence (42.38 Mb containing 13,657 genes) of Coniochaeta ligniaria NRRL 30616, an ascomycete with biotechnological relevance in the bioenergy field given its high potential for bioabatement of toxic furanic compounds in plant biomass hydrolysates and its capacity to degrade lignocellulosic material.

12.
Bioresour Technol ; 216: 437-45, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27262718

RESUMO

Elimination of microbial and enzyme inhibitors from pretreated lignocellulose is critical for effective cellulose conversion and yeast fermentation of liquid hot water (LHW) pretreated corn stover. In this study, xylan oligomers were hydrolyzed using either maleic acid or hemicellulases, and other soluble inhibitors were eliminated by biological detoxification. Corn stover at 20% (w/v) solids was LHW pretreated LHW (severity factor: 4.3). The 20% solids (w/v) pretreated corn stover derived liquor was recovered and biologically detoxified using the fungus Coniochaeta ligniaria NRRL30616. After maleic acid treatment, and using 5 filter paper units of cellulase/g glucan (8.3mg protein/g glucan), 73% higher cellulose conversion from corn stover was obtained for biodetoxified samples compared to undetoxified samples. This corresponded to 87% cellulose to glucose conversion. Ethanol production by yeast of pretreated corn stover solids hydrolysate was 1.4 times higher than undetoxified samples, with a reduction of 3h in the fermentation lag phase.


Assuntos
Reatores Biológicos , Etanol/síntese química , Maleatos/química , Zea mays , Ascomicetos/metabolismo , Celulose/química , Celulose/metabolismo , Fermentação , Hidrólise , Inativação Metabólica , Zea mays/química , Zea mays/metabolismo
13.
Biotechnol Prog ; 32(3): 606-12, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26950770

RESUMO

In conversion of biomass to fuels or chemicals, inhibitory compounds arising from physical-chemical pretreatment of the feedstock can interfere with fermentation of the sugars to product. Fungal strain Coniochaeta ligniaria NRRL30616 metabolizes the furan aldehydes furfural and 5-hydroxymethylfurfural, as well as a number of aromatic and aliphatic acids and aldehydes. Use of NRRL30616 to condition biomass sugars by metabolizing the inhibitors improves their fermentability. Wild-type C. ligniaria has the ability to grow on xylose as sole source of carbon and energy, with no accumulation of xylitol. Mutants of C. ligniaria unable to grow on xylose were constructed. Xylose reductase and xylitol dehydrogenase activities were reduced by approximately two thirds in mutant C8100. The mutant retained ability to metabolize inhibitors in biomass hydrolysates. Although C. ligniaria C8100 did not grow on xylose, the strain converted a portion of xylose to xylitol, producing 0.59 g xylitol/g xylose in rich medium and 0.48 g xylitol/g xylose in corn stover dilute acid hydrolysate. 2016 American Institute of Chemical Engineers Biotechnol. Prog., 2016 © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:606-612, 2016.


Assuntos
Ascomicetos/efeitos dos fármacos , Ascomicetos/metabolismo , Furaldeído/análogos & derivados , Furaldeído/farmacologia , Xilitol/biossíntese , Xilose/metabolismo , Ascomicetos/química , Relação Dose-Resposta a Droga , Fermentação/efeitos dos fármacos , Furaldeído/química , Relação Estrutura-Atividade , Xilitol/química , Xilose/química
14.
Bioresour Technol ; 190: 412-5, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25958134

RESUMO

A stepwise removal of inhibitory compounds by bioabatement combined with hemicellulase supplementation was conducted to enhance cellulose hydrolysis of liquid hot water-pretreated corn stover. Results showed that the fungus Coniochaeta ligniaria NRRL30616 eliminated most of the enzyme and fermentation inhibitors from liquid hot water-pretreated corn stover hydrolysates. Moreover, addition of hemicellulases after bioabatement and before enzymatic hydrolysis of cellulose achieved 20% higher glucose yields compared to non-treated samples. This work presents the mechanisms by which supplementation of the fungus with hemicellulase enzymes enables maximal conversion, and confirms the inhibitory effect of xylo-oligosaccharides in corn stover hydrolysates once the dominant inhibitory effect of phenolic compounds is removed.


Assuntos
Ascomicetos/metabolismo , Inibidores Enzimáticos/química , Glicosídeo Hidrolases/química , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Zea mays/microbiologia , Inibidores Enzimáticos/isolamento & purificação , Hidrólise , Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação
15.
Bioresour Technol ; 175: 17-22, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25459799

RESUMO

The production of ethanol from wheat straw (WS) by dilute acid pretreatment, bioabatement of fermentation inhibitors by a fungal strain, and simultaneous saccharification and fermentation (SSF) of the bio-abated WS to ethanol using an ethanologenic recombinant bacterium was studied at a pilot scale without sterilization. WS (124.2g/L) was pretreated with dilute H2SO4 in two parallel tube reactors at 160°C. The inhibitors were bio-abated by growing the fungus aerobically. The maximum ethanol produced by SSF of the bio-abated WS by the recombinant Escherichia coli FBR5 at pH 6.0 and 35°C was 36.0g/L in 83h with a productivity of 0.43gL(-1)h(-1). This value corresponds to an ethanol yield of 0.29g/g of WS which is 86% of the theoretical ethanol yield from WS. This is the first report on the production of ethanol by the recombinant bacterium from a lignocellulosic biomass at a pilot scale.


Assuntos
Reatores Biológicos/microbiologia , Escherichia coli , Etanol/síntese química , Fermentação , Triticum/química , Biomassa , Etanol/química , Projetos Piloto
16.
Bioresour Technol ; 146: 604-610, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23973982

RESUMO

Removal of enzyme inhibitors released during lignocellulose pretreatment is essential for economically feasible biofuel production. We tested bio-abatement to mitigate enzyme inhibitor effects observed in corn stover liquors after pretreatment with either dilute acid or liquid hot water at 10% (w/v) solids. Bio-abatement of liquors was followed by enzymatic hydrolysis of cellulose. To distinguish between inhibitor effects on enzymes and recalcitrance of the substrate, pretreated corn stover solids were removed and replaced with 1% (w/v) Solka Floc. Cellulose conversion in the presence of bio-abated liquors from dilute acid pretreatment was 8.6% (0.1x enzyme) and 16% (1x enzyme) higher than control (non-abated) samples. In the presence of bio-abated liquor from liquid hot water pretreated corn stover, 10% (0.1x enzyme) and 13% (1x enzyme) higher cellulose conversion was obtained compared to control. Bio-abatement yielded improved enzyme hydrolysis in the same range as that obtained using a chemical (overliming) method for mitigating inhibitors.


Assuntos
Biocombustíveis , Biomassa , Celulase/antagonistas & inibidores , Celulose/química , Fermentação , Lignina/química , Ácidos/química , Biodegradação Ambiental , Biotecnologia , Celulase/química , Produtos Agrícolas , Etanol/química , Hidrólise , Fatores de Tempo , Água/química , Zea mays
17.
Appl Environ Microbiol ; 78(17): 6365-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22729534

RESUMO

Two Pseudomonas strains known to utilize furan derivatives were shown to respond chemotactically to furfural, 5-hydroxymethylfurfural, furfuryl alcohol, and 2-furoic acid. In addition, a LysR-family regulatory protein known to regulate furan metabolic genes was found to be involved in regulating the chemotactic response.


Assuntos
Quimiotaxia , Furanos/metabolismo , Pseudomonas/fisiologia , Elementos de DNA Transponíveis , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Teste de Complementação Genética , Mutagênese Insercional , Pseudomonas/genética , Pseudomonas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
J Ind Microbiol Biotechnol ; 39(3): 439-47, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22080307

RESUMO

Sugarcane bagasse was characterized as a feedstock for the production of ethanol using hydrothermal pretreatment. Reaction temperature and time were varied between 160 and 200°C and 5-20 min, respectively, using a response surface experimental design. The liquid fraction was analyzed for soluble carbohydrates and furan aldehydes. The solid fraction was analyzed for structural carbohydrates and Klason lignin. Pretreatment conditions were evaluated based on enzymatic extraction of glucose and xylose and conversion to ethanol using a simultaneous saccharification and fermentation scheme. SSF experiments were conducted with the washed pretreated biomass. The severity of the pretreatment should be sufficient to drive enzymatic digestion and ethanol yields, however, sugars losses and especially sugar conversion into furans needs to be minimized. As expected, furfural production increased with pretreatment severity and specifically xylose release. However, provided that the severity was kept below a general severity factor of 4.0, production of furfural was below an inhibitory concentration and carbohydrate contents were preserved in the pretreated whole hydrolysate. There were significant interactions between time and temperature for all the responses except cellulose digestion. The models were highly predictive for cellulose digestibility (R (2) = 0.8861) and for ethanol production (R (2) = 0.9581), but less so for xylose extraction. Both cellulose digestion and ethanol production increased with severity, however, high levels of furfural generated under more severe pretreatment conditions favor lower severity pretreatments. The optimal pretreatment condition that gave the highest conversion yield of ethanol, while minimizing furfural production, was judged to be 190°C and 17.2 min. The whole hydrolysate was also converted to ethanol using SSF. To reduce the concentration of inhibitors, the liquid fraction was conditioned prior to fermentation by removing inhibitory chemicals using the fungus Coniochaeta ligniaria.


Assuntos
Celulose/química , Etanol/metabolismo , Fermentação , Saccharum/química , Biomassa , Reatores Biológicos , Biotecnologia , Carboidratos , Celulose/análise , Celulose/metabolismo , Furaldeído/análise , Furaldeído/metabolismo , Glucose/metabolismo , Lignina/química , Lignina/metabolismo , Temperatura , Xilose/metabolismo
19.
Appl Microbiol Biotechnol ; 92(4): 865-74, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21968655

RESUMO

Ethanol production by recombinant Escherichia coli strain FBR5 from dilute acid pretreated wheat straw (WS) by separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) was studied. The yield of total sugars from dilute acid (0.5% H(2)SO(4)) pretreated (160 °C, 10 min) and enzymatically saccharified (pH 5.0, 45 °C, 72 h) WS (86 g/l) was 50.0 ± 1.4 g/l. The hydrolyzate contained 1,184 ± 19 mg furfural and 161 ± 1 mg hydroxymethyl furfural per liter. The recombinant E. coli FBR5 could not grow at all at pH controlled at 4.5 to 6.5 in the non-abated wheat straw hydrolyzate (WSH) at 35 °C. However, it produced 21.9 ± 0.3 g ethanol from non-abated WSH (total sugars, 44.1 ± 0.4 g/l) in 90 h including the lag time of 24 h at controlled pH 7.0 and 35 °C. The bioabatement of WS was performed by growing Coniochaeta ligniaria NRRL 30616 in the liquid portion of the pretreated WS aerobically at pH 6.5 and 30 °C for 15 h. The bacterium produced 21.6 ± 0.5 g ethanol per liter in 40 h from the bioabated enzymatically saccharified WSH (total sugars, 44.1 ± 0.4 g) at pH 6.0. It produced 24.9 ± 0.3 g ethanol in 96 h and 26.7 ± 0.0 g ethanol in 72 h per liter from bioabated WSH by batch SSF and fed-batch SSF, respectively. SSF offered a distinct advantage over SHF with respect to reducing total time required to produce ethanol from the bioabated WS. Also, fed-batch SSF performed better than the batch SSF with respect to shortening the time requirement and increase in ethanol yield.


Assuntos
Metabolismo dos Carboidratos , Carboidratos/isolamento & purificação , Escherichia coli/metabolismo , Etanol/metabolismo , Caules de Planta/metabolismo , Triticum/metabolismo , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Fermentação , Concentração de Íons de Hidrogênio , Hidrólise , Temperatura
20.
Bioresour Technol ; 102(23): 10892-7, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21983410

RESUMO

Ethanol production by a recombinant bacterium from wheat straw (WS) at high solid loading by separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) was studied. The yield of total sugars from dilute acid pretreated WS (150 g/L) after enzymatic saccharification was 86.3±1.5 g/L. The pretreated WS was bio-abated by growing a fungal strain aerobically in the liquid portion for 16 h. The recombinant Escherichia coli strain FBR5 produced 41.1±1.1 gethanol/L from non-abated WS hydrolyzate (total sugars, 86.6±0.3 g/L) in 168 h at pH7.0 and 35 °C. The bacterium produced 41.8±0.0 g ethanol/L in 120 h from the bioabated WS by SHF. It produced 41.6±0.7 g ethanol/L in 120 h from bioabated WS by fed-batch SSF. This is the first report of the production of above 4% ethanol from a lignocellulosic hydrolyzate by the recombinant bacterium.


Assuntos
Carboidratos/química , Etanol/química , Triticum/metabolismo , Ácidos/química , Biomassa , Reatores Biológicos/microbiologia , Biotecnologia/métodos , Escherichia coli/genética , Fermentação , Concentração de Íons de Hidrogênio , Hidrólise , Lignina/química , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...